EXCELCHEM ENVIRONMENTAL LABS

500 Giuseppe Court, Suite 3 Roseville, CA 95678 Phone#: (916) 773-3664 Fax#: (916) 773-4784

ELAP Certificate No.: 2119

21 April 2006

Dawn Owen

CIWMB

P.O. Box 4025 / 1001 I Street

Sacramento, CA 95812

RE: Disposal Gardens

Workorder number:0603140

Enclosed are the results of analyses for samples received by the laboratory on 03/30/06 13:15. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,	
John Somers, Lab Director	

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

ANALYTICAL REPORT FOR SAMPLES

P10-05 0603140-01 Soil 0327061039 033006131-01 P10-10 0603140-02 Soil 0327061039 033006131-01 P10-15 0603140-03 Soil 0327061039 033006131-01 P10-20 0603140-04 Soil 0327061039 033006131-01 P10-23 0603140-05 Soil 0327061039 033006131-01 P10-30 0603140-07 Soil 0327061029 033006131-01 P10-37 0603140-08 Soil 0327061022 033006131-01 P10-42 0603140-09 Soil 0327061122 033006131-01 P10-50 0603140-10 Soil 0328060820 033006131-01 P11-10 0603140-11 Soil 0328060830 033006131-01 P11-12 0603140-12 Soil 0328060830 033006131-01 P11-15 0603140-13 Soil 0328060830 033006131-01 P11-15 0603140-14 Soil 032806090 033006131-01 P11-15 0603140-14 Soil	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P10-15 0603140-03 Soil 0327706 10:39 05/3006 13:15 P10-20 0603140-04 Soil 03/2706 10:39 03/3006 13:15 P10-25 0603140-05 Soil 03/2706 10:39 03/3006 13:15 P10-30 0603140-06 Soil 03/2706 10:39 03/3006 13:15 P10-37 0603140-07 Soil 03/2706 11:22 03/3006 13:15 P10-42 0603140-08 Soil 03/27/06 12:22 03/3006 13:15 P10-50 0603140-09 Soil 03/27/06 12:22 03/3006 13:15 P11-105 0603140-10 Soil 03/28/06 08:20 03/3006 13:15 P11-10 0603140-11 Soil 03/28/06 08:30 03/3006 13:15 P11-15 0603140-12 Soil 03/28/06 08:30 03/3006 13:15 P11-22 0603140-13 Soil 03/28/06 08:36 03/3006 13:15 P11-23 0603140-14 Soil 03/28/06 08:56 03/3006 13:15 P11-24 0603140-15 Soil 03/28/06 09:08 03/3006 13:15 <td< td=""><td>P10-05</td><td>0603140-01</td><td>Soil</td><td>03/27/06 10:39</td><td>03/30/06 13:15</td></td<>	P10-05	0603140-01	Soil	03/27/06 10:39	03/30/06 13:15
P10-20 0603140-04 Soil 03/27/06 10.39 03/3006 13.15 P10-25 0603140-05 Soil 03/27/06 10.39 03/3006 13.15 P10-30 0603140-06 Soil 03/27/06 10.39 03/3006 13.15 P10-37 0603140-07 Soil 03/27/06 11.22 03/3006 13.15 P10-42 0603140-08 Soil 03/27/06 12.22 03/3006 13.15 P10-50 0603140-10 Soil 03/28/06 08.20 03/3006 13.15 P11-10 0603140-11 Soil 03/28/06 08.20 03/3006 13.15 P11-15 0603140-12 Soil 03/28/06 08.30 03/3006 13.15 P11-15 0603140-12 Soil 03/28/06 08.30 03/3006 13.15 P11-22 0603140-13 Soil 03/28/06 08.30 03/3006 13.15 P11-25 0603140-14 Soil 03/28/06 09.00 03/3006 13.15 P11-30 0603140-15 Soil 03/28/06 09.15 03/3006 13.15 P11-31 0603140-16 Soil 03/28/06 09.18 03/3006 13.15	P10-10	0603140-02	Soil	03/27/06 10:39	03/30/06 13:15
P10-25 0603140-05 Soil 0327706 10-39 033006 13:15 P10-30 0603140-06 Soil 0327706 10-39 033006 13:15 P10-37 0603140-07 Soil 0327706 11:22 033006 13:15 P10-42 0603140-08 Soil 0327706 11:22 033006 13:15 P10-50 0603140-10 Soil 0327806 08:20 033006 13:15 P11-105 0603140-11 Soil 032806 08:20 033006 13:15 P11-10 0603140-12 Soil 032806 08:30 033006 13:15 P11-12 0603140-12 Soil 032806 08:30 033006 13:15 P11-22 0603140-13 Soil 032806 08:30 033006 13:15 P11-23 0603140-14 Soil 032806 08:36 033006 13:15 P11-24 0603140-15 Soil 032806 09:08 033006 13:15 P11-25 0603140-16 Soil 032806 09:18 033006 13:15 P11-30 0603140-17 Soil 032806 09:18 033006 13:15 P11-40 0603	P10-15	0603140-03	Soil	03/27/06 10:39	03/30/06 13:15
P10-30 0603140-06 Seil 03/27/06 10:39 03/30/06 13:15 P10-37 0603140-07 Seil 03/27/06 11:22 03/30/06 13:15 P10-42 0603140-08 Seil 03/27/06 11:22 03/30/06 13:15 P10-50 0603140-09 Seil 03/27/06 12:22 03/30/06 13:15 P11-05 0603140-10 Seil 03/28/06 08:20 03/30/06 13:15 P11-10 0603140-11 Seil 03/28/06 08:30 03/30/06 13:15 P11-15 0603140-12 Seil 03/28/06 08:30 03/30/06 13:15 P11-22 0603140-13 Seil 03/28/06 08:30 03/30/06 13:15 P11-25 0603140-13 Seil 03/28/06 08:40 03/30/06 13:15 P11-30 0603140-14 Seil 03/28/06 09:0 03/30/06 13:15 P11-35 0603140-15 Seil 03/28/06 09:0 03/30/06 13:15 P11-40 0603140-17 Seil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-21 Seil 03/28/06 09:28 03/30/06 13:15 <	P10-20	0603140-04	Soil	03/27/06 10:39	03/30/06 13:15
P10-37 0603140-07 Soil 03/27/06 11:22 03/30/06 13:15 P10-42 0603140-08 Soil 03/27/06 11:22 03/30/06 13:15 P10-50 0603140-09 Soil 03/27/06 12:22 03/30/06 13:15 P11-05 0603140-10 Soil 03/28/06 08:20 03/30/06 13:15 P11-10 0603140-11 Soil 03/28/06 08:30 03/30/06 13:15 P11-15 0603140-12 Soil 03/28/06 08:30 03/30/06 13:15 P11-22 0603140-13 Soil 03/28/06 08:36 03/30/06 13:15 P11-25 0603140-14 Soil 03/28/06 08:56 03/30/06 13:15 P11-30 0603140-15 Soil 03/28/06 08:56 03/30/06 13:15 P11-31 0603140-16 Soil 03/28/06 09:00 03/30/06 13:15 P11-32 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15	P10-25	0603140-05	Soil	03/27/06 10:39	03/30/06 13:15
P10-42 0603140-08 Soil 03/27/06 11.22 03/30/06 13:15 P10-50 0603140-09 Soil 03/27/06 12.22 03/30/06 13:15 P11-105 0603140-10 Soil 03/28/06 08:20 03/30/06 13:15 P11-10 0603140-11 Soil 03/28/06 08:30 03/30/06 13:15 P11-15 0603140-12 Soil 03/28/06 08:30 03/30/06 13:15 P11-15 0603140-12 Soil 03/28/06 08:40 03/30/06 13:15 P11-22 0603140-13 Soil 03/28/06 08:56 03/30/06 13:15 P11-25 0603140-14 Soil 03/28/06 09:00 03/30/06 13:15 P11-35 0603140-15 Soil 03/28/06 09:00 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-44 O603140-17 Soil 03/28/06 09:15 03/30/06 13:15 P11-45 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P11-50 0603140-20 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-21 Soil 03/28/06 13:20 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:40 03/30/06 13:15 P2-25 0603140-25 Soil 03/28/06 13:40 03/30/06 13:15 P2-25 0603140-25 Soil 03/28/06 13:40 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:16 03/30/06 13:15 P2-35 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15 P2-35 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15 P2-35 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15 P3-35 P3-35 0503140-27 O503140-27 O503	P10-30	0603140-06	Soil	03/27/06 10:39	03/30/06 13:15
P10-50 0603140-09 Soil 03/27/06 12:22 03/30/06 13:15 P11-05 0603140-10 Soil 03/28/06 08:20 03/30/06 13:15 P11-10 0603140-11 Soil 03/28/06 08:30 03/30/06 13:15 P11-15 0603140-12 Soil 03/28/06 08:40 03/30/06 13:15 P11-22 0603140-13 Soil 03/28/06 08:56 03/30/06 13:15 P11-25 0603140-14 Soil 03/28/06 09:00 03/30/06 13:15 P11-30 0603140-15 Soil 03/28/06 09:00 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:00 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:15 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-45 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P11-50 0603140-21 Soil 03/28/06 09:38 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15	P10-37	0603140-07	Soil	03/27/06 11:22	03/30/06 13:15
P11-05 0603140-10 Soil 03/28/06 08:20 03/30/06 13:15 P11-10 0603140-11 Soil 03/28/06 08:30 03/30/06 13:15 P11-15 0603140-12 Soil 03/28/06 08:40 03/30/06 13:15 P11-22 0603140-13 Soil 03/28/06 09:56 03/30/06 13:15 P11-25 0603140-14 Soil 03/28/06 09:00 03/30/06 13:15 P11-30 0603140-15 Soil 03/28/06 09:08 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:40 03/28/06 13:40 03/30/06 13:15 P2-25 0603140-22 Soil 03/28/06 13:48 03/3	P10-42	0603140-08	Soil	03/27/06 11:22	03/30/06 13:15
P11-10 0603140-11 Soil 03/28/06 08:30 03/30/06 13:15 P11-15 0603140-12 Soil 03/28/06 08:40 03/30/06 13:15 P11-22 0603140-13 Soil 03/28/06 08:56 03/30/06 13:15 P11-25 0603140-14 Soil 03/28/06 09:00 03/30/06 13:15 P11-30 0603140-15 Soil 03/28/06 09:08 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:08 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:15 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-45 0603140-19 Soil 03/28/06 09:25 03/30/06 13:15 P11-50 0603140-29 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-15 0603140-21 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 <t< td=""><td>P10-50</td><td>0603140-09</td><td>Soil</td><td>03/27/06 12:22</td><td>03/30/06 13:15</td></t<>	P10-50	0603140-09	Soil	03/27/06 12:22	03/30/06 13:15
P11-15 0603140-12 Soil 03/28/06 08:40 03/30/06 13:15 P11-22 0603140-13 Soil 03/28/06 08:56 03/30/06 13:15 P11-25 0603140-14 Soil 03/28/06 09:00 03/30/06 13:15 P11-30 0603140-15 Soil 03/28/06 09:08 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:18 03/30/06 13:15 P11-50 0603140-19 Soil 03/28/06 09:25 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 09:38 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:20 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 14:00 03/30/06 13:15	P11-05	0603140-10	Soil	03/28/06 08:20	03/30/06 13:15
P11-22 0603140-13 Soil 03/28/06 08:56 03/30/06 13:15 P11-25 0603140-14 Soil 03/28/06 09:00 03/30/06 13:15 P11-30 0603140-15 Soil 03/28/06 09:08 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 09:38 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:20 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:40 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:40 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15	P11-10	0603140-11	Soil	03/28/06 08:30	03/30/06 13:15
P11-25 0603140-14 Soil 03/28/06 09:00 03/30/06 13:15 P11-30 0603140-15 Soil 03/28/06 09:08 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P1-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:44 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15	P11-15	0603140-12	Soil	03/28/06 08:40	03/30/06 13:15
P11-30 0603140-15 Soil 03/28/06 09:08 03/30/06 13:15 P11-35 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-30 0603140-27 Soil 03/28/06 14:07 03/30/06 13:15	P11-22	0603140-13	Soil	03/28/06 08:56	03/30/06 13:15
P11-35 0603140-16 Soil 03/28/06 09:15 03/30/06 13:15 P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:07 03/30/06 13:15	P11-25	0603140-14	Soil	03/28/06 09:00	03/30/06 13:15
P11-40 0603140-17 Soil 03/28/06 09:18 03/30/06 13:15 P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P11-30	0603140-15	Soil	03/28/06 09:08	03/30/06 13:15
P11-45 0603140-18 Soil 03/28/06 09:25 03/30/06 13:15 P11-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P11-35	0603140-16	Soil	03/28/06 09:15	03/30/06 13:15
P11-50 0603140-19 Soil 03/28/06 09:38 03/30/06 13:15 P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P11-40	0603140-17	Soil	03/28/06 09:18	03/30/06 13:15
P2-05 0603140-20 Soil 03/28/06 13:20 03/30/06 13:15 P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P11-45	0603140-18	Soil	03/28/06 09:25	03/30/06 13:15
P2-10 0603140-21 Soil 03/28/06 13:30 03/30/06 13:15 P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P11-50	0603140-19	Soil	03/28/06 09:38	03/30/06 13:15
P2-15 0603140-22 Soil 03/28/06 13:40 03/30/06 13:15 P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P2-05	0603140-20	Soil	03/28/06 13:20	03/30/06 13:15
P2-20 0603140-23 Soil 03/28/06 13:48 03/30/06 13:15 P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P2-10	0603140-21	Soil	03/28/06 13:30	03/30/06 13:15
P2-25 0603140-24 Soil 03/28/06 13:54 03/30/06 13:15 P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P2-15	0603140-22	Soil	03/28/06 13:40	03/30/06 13:15
P2-30 0603140-25 Soil 03/28/06 14:00 03/30/06 13:15 P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 Soil 03/28/06 14:18 03/30/06 13:15	P2-20	0603140-23	Soil	03/28/06 13:48	03/30/06 13:15
P2-35 0603140-26 Soil 03/28/06 14:07 03/30/06 13:15 P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P2-25	0603140-24	Soil	03/28/06 13:54	03/30/06 13:15
P2-40 0603140-27 Soil 03/28/06 14:18 03/30/06 13:15	P2-30	0603140-25	Soil	03/28/06 14:00	03/30/06 13:15
	P2-35	0603140-26	Soil	03/28/06 14:07	03/30/06 13:15
P2-45 0603140-28 Soil 03/28/06 14:25 03/30/06 13:15	P2-40	0603140-27	Soil	03/28/06 14:18	03/30/06 13:15
	P2-45	0603140-28	Soil	03/28/06 14:25	03/30/06 13:15

Excelchem Environmental Lab.

Spl Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 1 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P2-50	0603140-29	Soil	03/28/06 14:35	03/30/06 13:15

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 2 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-05 0603140-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
	Result	Emik						110103
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/05/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
(ylenes (total)	ND	0.010	"	"	"	"		
urrogate: Chlorobenzene		90.4 %	% Recover	y Limits	70-1	130	"	
METALS BY 6000/7000 SERIES								
ntimony	3.5	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	2.5	1.0	"	"	"	"	"	
arium	223	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	0.9	0.5	"	"	"	04/05/06	"	
hromium	36.1	1.0	"	"	"	"	"	
obalt	6.8	5.0	"	"	"	04/05/06	"	
Copper	20.3	2.0	"	"	"	"	"	
ead	3.7	1.0	"	"	"	"	"	
Iercury	0.027	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Iolybdenum	1.1	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	15.4	1.0	"	"	"	04/05/06	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	32.4	2.0	"	"	"	04/05/06	"	
inc	69.6	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	04/11/06	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	ND	1.0	"	"	"	"	"	
22-C23	ND	1.0	"	"	"	"	"	
24-C25	ND	1.0	"	"	"	"	"	
26-C27	ND	1.0	"	"	"	"	"	
28-C29	ND	1.0	"	"	"	"	"	
30-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 3 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-05 0603140-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbons l	ov FID							
C32-C33	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C34-C35	ND	1.0		"	"	"	"	
C36-C37	ND	1.0	, "	"	"	"	"	
C38-C39	ND	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	ND	1.0		"	"	04/11/06	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	5.00	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
Arochlor 1221	ND	5.00	, "	"	"	"	"	
Arochlor 1232	ND	5.00	"	"	"	"	"	
Arochlor 1242	ND	5.00	"	"	"	"	"	
Arochlor 1248	ND	5.00	"	"	"	"	"	
Arochlor 1254	ND	5.00	"	"	"	"	"	
Arochlor 1260	ND	5.00	"	"	"	"	"	
urrogate: Decachlorobiphenyl		%	% Recover	y Limits	50-	150	"	S
emiVolatile Organic Compound	ds by GC/MS							
N-Nitrosodimethylamine	ND	1.00	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	1.00	"	"	"	"	"	
Phenol	ND	1.00	"	"	"	"	"	
-Chlorophenol	ND	1.00	"	"	"	"	"	
Benzyl alcohol	ND	1.00	"	"	"	"	"	
,4-Dichlorobenzene	ND	1.00	"	"	"	"	"	
-Methylphenol	ND	1.00	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	1.00	"	"	"	"	"	
-Methylphenol	ND	1.00	"	"	"	"	"	
Vitrobenzene	ND	1.00	"	"	"	"	"	
sophorone	ND	1.00	"	"	"	"	"	
-Nitrophenol	ND	1.00	"	"	"	"	"	
,4-Dimethylphenol	ND	1.00	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	1.00	"	"	"	"	"	
Benzoic acid	ND	3.00	"	"	"	"	"	
,4-Dichlorophenol	ND	1.00	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	1.00	"	"	"	"	"	
Naphthalene	ND	1.00	"	"	"	"	"	
-Chloroaniline	ND	1.00	"	"	"	"	"	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	
-Chloro-3-methylphenol	ND	1.00	"	"	"	"	"	
2-Methylnaphthalene	ND	1.00	"	"	"	"	"	

Excelchem Environmental Lab.

Du Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 4 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-05 0603140-01 (Soil)

Analyte	R Result	eporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							ED 1 0250 C	
Iexachlorocyclopentadiene	ND	1.00	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
,4,6-Trichlorophenol	ND	1.00	"	"	"	"	"	
4,5-Trichlorophenol	ND	1.00	"	"	"	"	"	
-Chloronaphthalene	ND	1.00	"	"	"	"	"	
Nitroaniline	ND	1.00	"	"	"	"	"	
cenaphthylene	ND	1.00	"	"	"	"	"	
imethyl phthalate	ND	1.00	"	"	"	"	"	
6-Dinitrotoluene	ND	1.00	"	"	"	"	"	
cenaphthene	ND	1.00	"	"	"	"	"	
Nitroaniline	ND	1.00	"	"	"	"	"	
4-Dinitrophenol	ND	1.00	"	"	"	"	"	
ibenzofuran	ND	1.00	"	"	"	"	"	
4-Dinitrotoluene	ND	1.00	"	"	"	"	"	
Nitrophenol	ND	1.00	"	"	"	"	"	
uorene	ND	1.00	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	1.00	"	"	"	"	"	
iethyl phthalate	ND	1.00	"	"	"	"	"	
Nitroaniline	ND	1.00	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	1.00	"	"	"	"	"	
-Nitrosodiphenylamine	ND	1.00	"	"	"	"	"	
Bromophenyl phenyl ether	ND	1.00	"	"	"	"	"	
exachlorobenzene	ND	1.00	"	"	"	"	"	
entachlorophenol	ND	1.00	"	"	"	"	"	
henanthrene	ND	1.00	"	"	"	"	"	
nthracene	ND	1.00	"	"	"	"	"	
arbazole	ND	1.00	"	"	"	"	"	
i-n-butyl phthalate	ND	1.00	"	"	"	"	"	
uoranthene	ND	1.00	"	"	"	"	"	
enzidine	ND	5.00	"	"	"	"	"	
vrene	ND	1.00	"	,,	"	"	"	
atyl benzyl phthalate	ND ND	1.00	"	"	"	"	"	
3'-Dichlorobenzidine	ND ND	1.00	,,	"	"	"	"	
enzo (a) anthracene			"	,,	,,		"	
	ND ND	1.00	"	,,	,,		"	
hrysene	ND	1.00	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND	2.00	"	"	"	"	"	
i-n-octyl phthalate	ND	1.00	"		"		"	
enzo (b) fluoranthene	ND	1.00		"		"		
enzo (k) fluoranthene	ND	1.00	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 5 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-05 0603140-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	ds by GC/MS							
Benzo (a) pyrene	ND	1.00	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	1.00	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	1.00	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1.00	"	"	"	"	"	
Surrogate: 2-Fluorophenol		%	% Recover	y Limits	10	110	"	S-00
Surrogate: Phenol-d6		62.9 %	% Recover	y Limits	10	110	"	
Surrogate: Nitrobenzene-d5		76.0 %	% Recover	y Limits	10	110	"	
Surrogate: 2-Fluorobiphenyl		82.6 %	% Recover	y Limits	10	110	"	
Surrogate: 2,4,6-Tribromophenol		76.6 %	% Recover	y Limits	10	110	"	
Surrogate: Terphenyl-dl4		95.2 %	% Recover	v Limits	10	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 6 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-10 0603140-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/03/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"		
rrogate: Chlorobenzene		90.4 %	% Recover	y Limits	70	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	2.1	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	2.1	1.0	"	"	"	"	"	
arium	287	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	04/05/06	"	
admium	2.9	0.5	"	"	"	04/05/06	"	
hromium	43.6	1.0	"	"	"	"	"	
obalt	7.0	5.0	"	"	"	"	"	
opper	65.1	2.0	"	"	"	"	"	
ead	4.6	1.0	"	"	"	"	"	
lercury	0.023	0.010	"	APD0023	"	04/06/06	EPA 7471A	
lolybdenum	1.1	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	18.0	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
lver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	04/05/06	"	
anadium	41.9	2.0	"	"	"	"	"	
inc	117	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	1.9	1.0	"	"	"	"	"	
22-C23	2.2	1.0	"	"	"	"	"	
24-C25	2.0	1.0	"	"	"	"	"	
26-C27	2.6	1.0	"	"	"	"	"	
28-C29	2.4	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 7 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-10 0603140-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons l	by FID							
C30-C31	2.0	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	1.7	1.0	"	"	"	"	"	
C34-C35	1.0	1.0	"	"	"	"	"	
C36-C37	1.1	1.0	"	"	"	"	"	
C38-C39	1.1	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	2.0	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	0.500	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
Arochlor 1221	ND	0.500	"	"	"	"	"	
Arochlor 1232	ND	0.500	"	"	"	"	"	
Arochlor 1242	ND	0.500	"	"	"	"	"	
Arochlor 1248	ND	0.500	"	"	"	"	"	
Arochlor 1254	ND	0.500	"	"	"	"	"	
arochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		108 %	% Recover	y Limits	50-	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
N-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
V-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
Vitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
sis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Naphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Iexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 8 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-10 0603140-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compounds							TD 1 00 00 0	
Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Methylnaphthalene	ND	0.100	"	"	"	"		
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
vrene	ND	0.100	"	"	"	"	"	
ıtyl benzyl phthalate	ND	0.100	"	,,	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	,,	"	"	"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
nrysene	ND ND	0.100	"	,,	"	"	"	
	ND ND	1.00	,,	"	"	"	"	
s(2-ethylhexyl)phthalate i-n-octyl phthalate	ND ND	0.100	"	,,	,,	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 9 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-10 0603140-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	ls by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
ndeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		63.5 %	% Recovery	y Limits	10-	110	"	
Surrogate: Phenol-d6		70.7 %	% Recovery	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		67.1 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		71.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		78.4 %	% Recovery	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		73.7 %	% Recovery	v Limits	10-	110	"	

Excelchem Environmental Lab.

De Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 10 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-15 0603140-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
		· · · · · · · · · · · · · · · · · · ·						·
TEX/TPHG by PID/FID							EPA 8021B/8015m	
enzene	ND	0.005	mg/kg "	APC0155	03/31/06	04/05/06	EPA 8021B/8015M	
oluene	ND	0.005	,,	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	,,	
(ylenes (total)	ND	0.010					"	
urrogate: Chlorobenzene		60.9 %	% Recovery	y Limits	70-	130	"	S-Lo
METALS BY 6000/7000 SERIES								
ntimony	1.6	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.8	1.0	"	"	"	"	"	
arium	241	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	2.1	0.5	"	"	"	04/05/06	"	
hromium	50.0	1.0	"	"	"	"	"	
obalt	7.5	5.0	"	"	"	04/05/06	"	
opper	15.8	2.0	"	"	"	"	"	
ead	ND	1.0	"	"	"	"	"	
lercury	0.077	0.010	"	APD0023	"	04/06/06	EPA 7471A	
l olybdenum	3.3	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	19.3	1.0	"	"	"	04/05/06	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	47.8	2.0	"	"	"	04/05/06	"	
inc	104	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by	y FID							
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	1.8	1.0	"	"	"	"	"	
16-C17	6.0	1.0	"	"	"	"	"	
18-C19	6.2	1.0	"	"	"	"	"	
20-C21	8.2	1.0	"	"	"	"	"	
22-C23	6.2	1.0	"	"	"	"	"	
224-C25	3.2	1.0	"	"	"	"	"	
226-C27	4.8	1.0	"	"	"	"	"	
28-C29	3.6	1.0	"	,,	,,	,,	"	

Excelchem Environmental Lab.

Spen Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 11 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-15 0603140-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbons l	by FID							
C30-C31	3.7	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	4.2	1.0	"	"	"	"	"	
C34-C35	2.8	1.0	"	"	"	"	"	
C36-C37	2.1	1.0	"	"	"	"	"	
C38-C39	1.9	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	2.6	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	1.00	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
Arochlor 1221	ND	1.00	"	"	"	"	"	
Arochlor 1232	ND	1.00	"	"	"	"	"	
Arochlor 1242	ND	1.00	"	"	"	"	"	
Arochlor 1248	ND	1.00	"	"	"	"	"	
Arochlor 1254	ND	1.00	"	"	"	"	"	
Arochlor 1260	ND	1.00	"	"	"	"	"	
urrogate: Decachlorobiphenyl		110 %	% Recover	y Limits	50-	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
N-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
V-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
Vitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Naphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Iexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 12 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-15 0603140-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compounds							TD 1 00 00 0	
Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Methylnaphthalene	ND	0.100	"	"	"	"		
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
vrene	ND	0.100	"	"	"	"	"	
ıtyl benzyl phthalate	ND	0.100	"	,,	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
nrysene	ND ND	0.100	"	,,	"	"	"	
	ND ND	1.00	,,	"	"	"	"	
s(2-ethylhexyl)phthalate i-n-octyl phthalate	ND ND	0.100	"	,,	,,	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 13 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-15 0603140-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	ls by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
ndeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
urrogate: 2-Fluorophenol		66.5 %	% Recovery	y Limits	10-1	110	"	
urrogate: Phenol-d6		74.3 %	% Recovery	y Limits	10-1	110	"	
'urrogate: Nitrobenzene-d5		70.7 %	% Recovery	y Limits	10-1	110	"	
urrogate: 2-Fluorobiphenyl		76.0 %	% Recovery	y Limits	10-1	110	"	
urrogate: 2,4,6-Tribromophenol		89.2 %	% Recovery	y Limits	10-1	110	"	
urrogate: Terphenyl-dl4		79.0 %	% Recovery	/ Limits	10-1	110	"	

Excelchem Environmental Lab.

De Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 14 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-20 0603140-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
	result	Emin			•	<u> </u>		110103
BTEX/TPHG by PID/FID								
Benzene	ND	0.005	mg/kg	APC0155	03/31/06	04/05/06	EPA 8021B/8015m	
Γoluene	ND	0.005	"	"	"	"	"	
Ethylbenzene	ND	0.005	"	"	"	"	"	
Xylenes (total)	ND	0.010	"	"	"	"	"	
Surrogate: Chlorobenzene		61.4 %	% Recover	y Limits	70	130	"	S-LO
METALS BY 6000/7000 SER	IES							
Antimony	1.3	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
Arsenic	1.9	1.0	"	"	"	04/05/06	"	
Barium	251	2.0	"	"	"	04/05/06	"	
Beryllium	ND	0.3	"	"	"	"	"	
Cadmium	2.4	0.5	"	"	"	04/05/06	"	
Chromium	67.4	1.0	"	"	"	"	"	
Cobalt	6.3	5.0	"	"	"	"	"	
Copper	18.9	2.0	"	"	"	"	"	
Lead	ND	1.0	"	"	"	04/05/06	"	
Mercury	0.065	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Molybdenum	6.0	1.0	"	APD0028	"	04/05/06	EPA 6010B	
Nickel	14.7	1.0	"	"	"	"	"	
Selenium	ND	2.0	"	"	"	"	"	
Silver	ND	2.0	"	"	"	04/05/06	"	
Γhallium	ND	2.0	"	"	"	"	"	
Vanadium	65.1	2.0	"	"	"	"	"	
Zinc	72.0	2.0	"	"	"	"	"	
Total Petroleum Hydrocarbo	ns by FID							
C7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C10-C11	ND	1.0	"	"	"	"	"	
C12-C13	ND	1.0	"	"	"	"	"	
C14-C15	ND	1.0	"	"	"	"	"	
C16-C17	ND	1.0	"	"	"	"	"	
C18-C19	ND	1.0	"	"	"	"	"	
C20-C21	1.7	1.0	"	"	"	"	"	
C22-C23	1.5	1.0	"	"	"	"	"	
C24-C25	1.0	1.0	"	"	"	"	"	
C26-C27	1.6	1.0	"	"	"	"	"	
C28-C29	1.6	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 15 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-20 0603140-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
,	Result	Limit						Notes
Total Petroleum Hydrocarbons I	by FID							
C30-C31	1.6	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	1.4	1.0	"	"	"	"	"	
C34-C35	1.4	1.0	"	"	"	"	"	
C36-C37	1.0	1.0	"	"	"	"	"	
C38-C39	1.2	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	1.6	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	0.500	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
Arochlor 1221	ND	0.500	"	"	"	"	"	
Arochlor 1232	ND	0.500	"	"	"	"	"	
Arochlor 1242	ND	0.500	"	"	"	"	"	
Arochlor 1248	ND	0.500	"	"	"	"	"	
Arochlor 1254	ND	0.500	"	"	"	"	"	
Arochlor 1260	ND	0.500	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		114 %	% Recover	y Limits	50-	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
N-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/09/06	04/11/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
Phenol	ND	0.100	"	"	"	"	"	
2-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
2-Methylphenol	ND	0.100	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
1-Methylphenol	ND	0.100	"	"	"	"	"	
Nitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
2-Nitrophenol	ND	0.100	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Naphthalene	ND	0.100	"	"	"	"	"	
1-Chloroaniline	ND	0.100	"	"	"	"	"	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Some Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 16 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-20 0603140-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							TD 1 00 00 0	
-Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/09/06	04/11/06	EPA 8270C	
-Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND ND	0.100	"	,,	"	"	"	
arbazole	ND ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND ND	0.100	"	"	"	"	"	
uoranthene			,,	,,	,,	,,	"	
uorantnene enzidine	ND ND	0.100 0.500	,,	,,	,,		"	
			"	,,	,,		"	
rene	ND	0.100	,,	"	"		"	
atyl benzyl phthalate	ND	0.100	"	"	"	"	,,	
3'-Dichlorobenzidine	ND	0.100	"				"	
enzo (a) anthracene	ND	0.100		"	"	"		
hrysene	ND	0.100	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND	1.00	"	"	"	"	"	
-n-octyl phthalate	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Spe Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 17 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-20 0603140-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/09/06	04/11/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		55.4 %	% Recover	y Limits	10-1	110	"	
Surrogate: Phenol-d6		61.1 %	% Recover	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		61.1 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		67.7 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		71.3 %	% Recover	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		71.9 %	% Recover	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 18 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-25 0603140-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
BTEX/TPHG by PID/FID	ND	0.005	//	4 P.CO.1.5.5	02/21/06	0.4/0.5/0.6	EPA 8021B/8015m	
Benzene Foluene	ND ND	0.005 0.005	mg/kg	APC0155	03/31/06	04/05/06	LI A 6021B/6013III	
Ethylbenzene	ND ND	0.003	,,	"	"	,	"	
Kylenes (total)	ND ND	0.003	"	"	"	,,	"	
Surrogate: Chlorobenzene	ND	64.5 %	% Recover	n. Limita	70		"	S-LO)
_		01.5 70	70 Recover	y Lillits	70.	.50		5207
METALS BY 6000/7000 SERIES	ND	1.0	ma/lra	APD0028	04/04/06	04/05/06	EPA 6010B	
Antimony Arsenic	ND ND	1.0	mg/kg	APD0028	04/04/06	U4/U3/U6 "	"	
Sarium	109	2.0	"	"	"	04/05/06	"	
Beryllium	ND	0.3	"	,,	"	04/05/06	"	
Serymum C admium	2.0	0.5	"	"	"	04/05/06	"	
Chromium	49.0	1.0	"	,,	"		"	
			"	"	"	04/05/06	"	
Cobalt	6.6	5.0	"	"	"	"	"	
Copper	19.4	2.0					"	
Lead	ND	1.0	"	"	"	"		
Mercury	0.075	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Molybdenum	1.9	1.0	"	APD0028	"	04/05/06	EPA 6010B	
Nickel	13.9	1.0	"	"	"	"	"	
Selenium	ND	2.0	"	"	"	"	"	
Silver	ND	2.0	"	"	"	"	"	
Γhallium	ND	2.0	"	"	"	04/05/06	"	
Vanadium	47.5	2.0	"	"	"	"	"	
Zinc	102	2.0	"	"	"	"	"	
Total Petroleum Hydrocarbons by FID								
C7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C10-C11	ND	1.0	"	"	"	"	"	
C12-C13	ND	1.0	"	"	"	"	"	
C14-C15	ND	1.0	"	"	"	"	"	
C16-C17	1.0	1.0	"	"	"	"	"	
C18-C19	1.3	1.0	"	"	"	"	"	
C20-C21	2.0	1.0	"	"	"	"	"	
C22-C23	1.5	1.0	"	"	"	"	"	
C24-C25	1.3	1.0	"	"	"	"	"	
C26-C27	ND	1.0	"	"	"	"	"	
C28-C29	ND	1.0	"	"	"	"	"	
C30-C31	ND	1.0	"	"	"	,,	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative

Page 19 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-25 0603140-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
	Result	Liiiit						Notes
Total Petroleum Hydrocarbons l	by FID							
C32-C33	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C34-C35	ND	1.0	"	"	"	"	"	
C36-C37	ND	1.0	"	"	"	"	"	
C38-C39	ND	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	1.0	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	0.500	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
Arochlor 1221	ND	0.500	"	"	"	"	"	
Arochlor 1232	ND	0.500	"	"	"	"	"	
Arochlor 1242	ND	0.500	"	"	"	"	"	
Arochlor 1248	ND	0.500	"	"	"	"	"	
Arochlor 1254	ND	0.500	"	"	"	"	"	
Arochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		115 %	% Recovery	y Limits	50-1	150	"	
emiVolatile Organic Compound	ds by GC/MS							
N-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/09/06	04/11/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
Vitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Iaphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Iexachlorobutadiene	ND	0.100	"	"	"	"	"	
-Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	
-Methylnaphthalene	ND	0.100	"	"	,,	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 20 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-25 0603140-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
lexachlorocyclopentadiene	ND	0.100	mg/kg	APD0054	04/09/06	04/11/06	EPA 8270C	
,4,6-Trichlorophenol	ND	0.100	"	"	"	"		
,4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
-Chloronaphthalene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
,4-Dinitrophenol	ND	0.100	"	"	"	"	"	
Dibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
henanthrene	ND	0.100		"	"	"	"	
nthracene	ND	0.100		"	"	"	"	
arbazole	ND	0.100	,,	"	,,	"	"	
i-n-butyl phthalate	ND	0.100	,,	"	"	,,	"	
uoranthene	ND ND	0.100	,,	,,	,,	,,	"	
enzidine	ND ND	0.100	,,	,,	"	,,	"	
			,,	,,	,,	,,	"	
yrene	ND	0.100		"	"	"	"	
utyl benzyl phthalate	ND	0.100	,,	"	"	"	,,	
3'-Dichlorobenzidine	ND	0.100	"	"	"		"	
enzo (a) anthracene	ND	0.100						
hrysene	ND	0.100	"	"	"	"		
is(2-ethylhexyl)phthalate	ND	1.00	"	"	"	"		
i-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"		
enzo (k) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Some Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 21 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-25 0603140-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	ds by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0054	04/09/06	04/11/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		57.4 %	% Recovery	y Limits	10-1	110	"	
Surrogate: Phenol-d6		64.1 %	% Recovery	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		64.1 %	% Recovery	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		69.5 %	% Recovery	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		71.9 %	% Recovery	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		73.1 %	% Recovery	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 22 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-30 0603140-06 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
								·
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/05/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
(ylenes (total)	ND	0.010	"	"	"	"		
urrogate: Chlorobenzene		79.4 %	% Recovery	y Limits	70-	130	"	
METALS BY 6000/7000 SERIES								
ntimony	1.7	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.4	1.0	"	"	"	"	"	
arium	174	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
Cadmium	1.3	0.5	"	"	"	04/05/06	"	
Chromium	43.9	1.0	"	"	"	"	"	
Cobalt	6.3	5.0	"	"	"	"	"	
opper	77.5	2.0	"	"	"	04/05/06	"	
ead	30.8	1.0	"	"	"	"	"	
1 ercury	0.100	0.010	"	APD0023	"	04/06/06	EPA 7471A	
1 olybdenum	5.7	1.0	"	APD0028	"	04/05/06	EPA 6010B	
lickel	18.7	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	04/05/06	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	42.5	2.0	"	"	"	"	"	
inc	167	2.0	"	"	"	04/05/06	"	
Otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
210-C11	ND	1.0	"	"	"	"	"	
212-C13	ND	1.0	"	"	"	"	"	
214-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	1.2	1.0	"	"	"	"	"	
220-C21	1.9	1.0	"	"	"	"	"	
222-C23	1.6	1.0	"	"	"	"	"	
224-C25	1.3	1.0	"	"	"	"	"	
26-C27	ND	1.0	"	"	"	"	"	
28-C29	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 23 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-30 0603140-06 (Soil)

Analyte		Reporting	Units	Batch	Date Prepared	Date Analyzed	Method	3.7
Allalyte	Result	Limit	Units	Daten	Гтерагец	Anaryzeu	Wethod	Notes
	EID							
otal Petroleum Hydrocarbons by 30-C31	1.0	1.0	/1	4 PD0000	0.4/02/06	04/11/06	EDA 0015	
		1.0	mg/kg "	APD0008	04/03/06	04/11/06	EPA 8015m	
32-C33	ND	1.0	"	"	"	"	"	
34-C35	ND	1.0	"	"	"	"	"	
36-C37	ND	1.0	"				"	
38-C39	ND	1.0		"	"	"		
40, C41, C42, C43, C44	1.0	1.0	"	"	"	"	"	
esticides/PCB by ECD								
rochlor 1016	ND	1.00	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
rochlor 1221	ND	1.00	"	"	"	"	"	
rochlor 1232	ND	1.00	"	"	"	"	"	
rochlor 1242	ND	1.00	"	"	"	"	"	
rochlor 1248	ND	1.00	"	"	"	"	"	
rochlor 1254	ND	1.00	"	"	"	"	"	
rochlor 1260	ND	1.00	"	"	"	"	"	
urrogate: Decachlorobiphenyl		112 %	% Recovery	y Limits	50-	150	"	
emiVolatile Organic Compounds	by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
itrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	,,	"	"	"	
Nitrophenol	ND	0.100	"	,,	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	,,	"	"	"	
Chloroaniline	ND ND	0.100	"	,,	"	,,	"	
exachlorobutadiene	ND ND	0.100	"	"	,,	"	"	
Chloro-3-methylphenol	ND ND	0.100	,,	,,	,,		,,	

Excelchem Environmental Lab.

Sph Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 24 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-30 0603140-06 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							EDA 0270C	
-Methylnaphthalene	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"		
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
methyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
ethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
-n-butyl phthalate	ND	0.100		"	"	"	"	
uoranthene	ND	0.100		"	"	"	"	
enzidine	ND ND	0.100	,,	,,	"	"	"	
vrene	ND ND	0.300	,,	"	"	"	"	
	ND ND	0.100	"	,,	,,		"	
ityl benzyl phthalate			"	,,	,,		"	
3'-Dichlorobenzidine	ND	0.100	,,	"	"	"	"	
enzo (a) anthracene	ND	0.100	,,	"	"	"	,,	
nrysene	ND	0.100					"	
is(2-ethylhexyl)phthalate	ND	1.00	"	"	"	"		
-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 25 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-30 0603140-06 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound enzo (k) fluoranthene	ND	0.100	mg/kg	APD0054	04/09/06	04/12/06	EPA 8270C	
enzo (a) pyrene	ND ND	0.100	mg/kg	AFD0034	04/09/00	04/12/00	"	
ndeno (1,2,3-cd) pyrene	ND ND	0.100	"	"	,,	"	"	
Pibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
enzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
urrogate: 2-Fluorophenol		64.1 %	% Recovery	v Limits	10-1	10	"	
urrogate: Phenol-d6		70.7 %	% Recovery		10-1		"	
urrogate: Nitrobenzene-d5		68.3 %	% Recovery		10-1		"	
urrogate: 2-Fluorobiphenyl		73.1 %	% Recovery		10-1		"	
urrogate: 2,4,6-Tribromophenol		80.8 %	% Recovery		10-1		"	
urrogate: Terphenyl-dl4		75.4 %	% Recovery		10-1		"	
Tethod 8280								
,2,3,4,6,7,8-HpCDD	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
2,3,4,6,7,8-HpCDF	ND	2.5	"	"	"	"	"	
2,3,4,7,8,9-HpCDF	ND	2.5	"	"	"	"	"	
2,3,4,7,8-HxCDD	ND	2.5	"	"	"	"	"	
2,3,4,7,8-HxCDF	ND	2.5	"	"	"	"	"	
2,3,6,7,8-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
2,3,7,8,9-HxCDD	ND	2.5	"	"	"	"	"	
2,3,7,8,9-HxCDF	ND	2.5	"	"	"	"	"	
2,3,7,8-PeCDD	ND	2.5	"	"	"	"	"	
2,3,7,8-PeCDF	ND	2.5	"	"	"	"	"	
3,4,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
3,4,7,8-PeCDF	ND	2.5	"	"	"	"	"	
3,7,8-TCDD	ND	1.0	"	"	"	"	"	
3,7,8-TCDF	ND	1.0	"	"	"	"	"	
CDD	ND	5.0	"	"	"	"	"	
CDF	ND	5.0	"	"	"	"	"	
otal HpCDD	ND	2.5	"	"	"	"	"	
otal HpCDF	ND	2.5	"	"	"	"	"	
otal HxCDD	ND	2.5	"	"	"	"	"	
otal HxCDF	ND	2.5	"	"	"	"	"	
otal PeCDD	ND	2.5	"	"	"	"	"	
otal PeCDF	ND	2.3					"	

Excelchem Environmental Lab.

De some

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 26 of 144

CIWMB

Project:

Disposal Gardens

P.O. Box 4025 / 1001 I Street Sacramento CA, 95812

Project Number: Project Manager: NA Dawn Owen Date Reported: 04/21/06 15:09

P10-30 0603140-06 (Soil)

Analyte	Rej Result	porting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Method 8280								
Total TCDD	ND	1.0	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
Total TCDF	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 27 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-37 0603140-07 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/07/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
(ylenes (total)	ND	0.010	"	"	"	"	"	
urrogate: Chlorobenzene		58.3 %	% Recover	y Limits	70-1	130	"	S-LC
METALS BY 6000/7000 SERIES								
ntimony	1.4	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	3.6	1.0	"	"	"	"	"	
arium	325	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	04/05/06	"	
admium	1.1	0.5	"	"	"	04/05/06	"	
hromium	44.6	1.0	"	"	"	"	"	
obalt	6.3	5.0	"	"	"	"	"	
opper	81.7	2.0	"	"	"	"	"	
ead	11.0	1.0	"	"	"	"	"	
Iercury	0.073	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Iolybdenum	5.0	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	29.5	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	04/05/06	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	43.2	2.0	"	"	"	"	"	
inc	197	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	1.2	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
110-C11	5.8	1.0	"	"	"	"	"	
T12-C13	15.3	1.0	"	"	"	"	"	
14-C15	21.9	1.0	"	"	"	"	"	
16-C17	47.3	1.0	"	"	"	"	"	
18-C19	55.7	1.0	"	"	"	"	"	
20-C21	67.0	1.0	"	"	"	"	"	
222-C23	55.1	1.0	"	"	"	"	"	
224-C25	48.8	1.0	"	"	"	"	"	
226-C27	52.2	1.0	"	"	"	"	"	
228-C29	37.7	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 28 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-37 0603140-07 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons	by FID							
30-C31	26.1	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
232-C33	11.9	1.0	"	"	"	"	"	
C34-C35	9.1	1.0	"	"	"	"	"	
236-C37	5.3	1.0	"	"	"	"	"	
238-C39	3.7	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	2.1	1.0	"	"	"	"	"	
esticides/PCB by ECD								
rochlor 1016	ND	1.00	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
crochlor 1221	ND	1.00	"	"	"	"	"	
crochlor 1232	ND	1.00	"	"	"	"	"	
crochlor 1242	ND	1.00	"	"	"	"	"	
crochlor 1248	ND	1.00	"	"	"	"	"	
crochlor 1254	ND	1.00	"	"	"	"	"	
crochlor 1260	ND	1.00	"	"	"	"	"	
urrogate: Decachlorobiphenyl		110 %	% Recover	y Limits	50-1	150	"	
emiVolatile Organic Compoun	ds by GC/MS							
I-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
litrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
lexachlorobutadiene	ND	0.100	**	"	,,	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 29 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-37 0603140-07 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
vrene	ND	0.100	"	"	"	"	"	
utyl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
hrysene	ND	0.100	"	"	"	"	"	
is(2-ethylhexyl)phthalate	ND	1.00	"	"	"	"	"	
i-n-octyl phthalate	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 30 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-37 0603140-07 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	ds by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		62.3 %	% Recover	y Limits	10-	110	"	
Surrogate: Phenol-d6		66.5 %	% Recover	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		64.7 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		68.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		77.8 %	% Recover	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		68.3 %	% Recover	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 31 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-42 0603140-08 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
(ylenes (total)	ND	0.010	"	"	"	"	"	
urrogate: Chlorobenzene		70.6 %	% Recover	y Limits	70-2	130	"	
METALS BY 6000/7000 SERIES								
ntimony	1.5	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	3.2	1.0	"	"	"	"	"	
arium	288	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	1.4	0.5	"	"	"	04/05/06	"	
hromium	60.6	1.0	"	"	"	"	"	
obalt	8.0	5.0	"	"	"	04/05/06	"	
opper	63.0	2.0	"	"	"	"	"	
ead	7.3	1.0	"	"	"	"	"	
lercury	0.068	0.010	"	APD0023	"	04/06/06	EPA 7471A	
l olybdenum	7.6	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	22.3	1.0	"	"	"	04/05/06	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	58.8	2.0	"	"	"	04/05/06	"	
inc	86.2	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	1.8	1.0	"	"	"	"	"	
712-C13	6.1	1.0	"	"	"	"	"	
214-C15	9.5	1.0	"	"	"	"	"	
216-C17	22.2	1.0	"	"	"	"	"	
718-C19	27.4	1.0	"	"	"	"	"	
220-C21	32.1	1.0	"	"	"	"	"	
222-C23	27.2	1.0	"	"	"	"	"	
224-C25	25.0	1.0	"	"	"	"	"	
226-C27	22.1	1.0	"	"	"	"	"	
28-C29	16.8	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Sph Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 32 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-42 0603140-08 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons l	-							
30-C31	11.8	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
32-C33	6.1	1.0	"	"	"	"	"	
34-C35	4.1	1.0	"	"	"	"	"	
36-C37	2.7	1.0	"	"	"	"	"	
38-C39	2.0	1.0	"	"	"	"	"	
40, C41, C42, C43, C44	1.4	1.0	m .	"	"	"	11	
esticides/PCB by ECD								
rochlor 1016	ND	0.500	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.500	"	"	"	"	"	
rochlor 1232	ND	0.500	"	"	"	"	"	
rochlor 1242	ND	0.500	"	"	"	"	"	
rochlor 1248	ND	0.500	"	"	"	"	"	
rochlor 1254	ND	0.500	"	"	"	"	"	
rochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		100 %	% Recovery	y Limits	50-1	150	"	
emiVolatile Organic Compound	ds by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
nenol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
itrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
_	ND	0.100	"	"	"	"	"	
Chloroaniline	ND	0.100						

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 33 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-42 0603140-08 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compounds							77	
Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
methyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
benzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
ethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
vrene	ND	0.100	"	"	"	"	"	
ityl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND ND	0.100	"	"	"	"	"	
nrysene	ND ND	0.100	"	,,	"	"	"	
	ND ND	1.00	"	"	"	"	"	
s(2-ethylhexyl)phthalate i-n-octyl phthalate	ND ND	0.100	"	"	,,		"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 34 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-42 0603140-08 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		58.7 %	% Recover	y Limits	10-	110	"	
Surrogate: Phenol-d6		65.9 %	% Recover	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		66.5 %	% Recover	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		70.7 %	% Recover	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		80.8 %	% Recover	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		76.0 %	% Recover	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 35 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-50 0603140-09 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"		
arrogate: Chlorobenzene		83.2 %	% Recovery	y Limits	70	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	1.3	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.8	1.0	"	"	"	04/05/06	"	
arium	454	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	1.5	0.5	"	"	"	04/05/06	"	
hromium	50.0	1.0	"	"	"	"	"	
obalt	6.7	5.0	"	"	"	"	"	
opper	60.5	2.0	"	"	"	"	"	
ead	22.7	1.0	"	"	"	04/05/06	"	
lercury	0.090	0.010	"	APD0023	"	04/06/06	EPA 7471A	
lolybdenum	6.5	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	25.7	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
lver	ND	2.0	"	"	"	04/05/06	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	49.0	2.0	"	"	"	"	"	
inc	142	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	3.5	1.0	"	"	"	"	"	
14-C15	6.4	1.0	"	"	"	"	"	
16-C17	14.9	1.0	"	"	"	"	"	
18-C19	18.8	1.0	"	"	"	"	"	
20-C21	21.4	1.0	"	"	"	"	"	
22-C23	18.0	1.0	"	"	"	"	"	
24-C25	14.9	1.0	"	"	"	"	"	
26-C27	19.1	1.0	"	"	"	"	"	
28-C29	14.6	1.0	"	,,	,,	"	,,	

Excelchem Environmental Lab.

Spen Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 36 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-50 0603140-09 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Гotal Petroleum Hydrocarbons b	hy FID							
C30-C31	10.3	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	5.0	1.0	"	,,	"	"	"	
C34-C35	4.4	1.0	"	,,	"	,,	"	
C36-C37	3.1	1.0	"	,,	"	"	"	
C38-C39	2.6	1.0	"	,,	"	"	"	
C40, C41, C42, C43, C44	1.9	1.0	"	,,	,,	,,	"	
	1.9	1.0						
Pesticides/PCB by ECD							DCD DV EDA 0002	
Arochlor 1016	ND	5.00	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
Arochlor 1221	ND	5.00	"	"	"	"	"	
Arochlor 1232	ND	5.00	"	"	"	"		
Arochlor 1242	ND	5.00	"	"	"	"	"	
Arochlor 1248	ND	5.00	"	"	"	"	"	
Arochlor 1254	ND	5.00	"	"	"	"	"	
Arochlor 1260	ND	5.00						
Surrogate: Decachlorobiphenyl		%	% Recovery	y Limits	50-1	150	"	S-
SemiVolatile Organic Compound								
N-Nitrosodimethylamine	ND	1.00	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	1.00	"	"	"	"	"	
Phenol	ND	1.00	"	"	"	"		
2-Chlorophenol	ND	1.00	"	"	"	"	"	
Benzyl alcohol	ND	1.00	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.00	"	"	"	"	"	
2-Methylphenol	ND	1.00	"	"	"	"		
N-Nitrosodi-n-propylamine	ND	1.00	"	"	"	"	"	
1-Methylphenol	ND	1.00	"	"	"	"		
Nitrobenzene	ND	1.00	"	"	"	"		
sophorone	ND	1.00	"	"	"			
2-Nitrophenol	ND	1.00	"	"	"	"		
2,4-Dimethylphenol	ND	1.00	"	"		"		
Bis(2-chloroethoxy)methane	ND	1.00	"		"			
Benzoic acid	ND	3.00	"	"	"	"		
2,4-Dichlorophenol	ND	1.00	"	"				
1,2,4-Trichlorobenzene	ND	1.00		"	"	"	"	
Naphthalene	ND	1.00	"	"	"	"	"	
4-Chloroaniline	ND	1.00	"	"	"	"	"	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 37 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-50 0603140-09 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
miVolatile Organic Compounds							EDA 0070C	
Chloro-3-methylphenol	ND	1.00	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
Methylnaphthalene	ND	1.00	"	"	"	"	"	
xachlorocyclopentadiene	ND	1.00	"	"	"	"	"	
,6-Trichlorophenol	ND	1.00	"	"	"	"		
,5-Trichlorophenol	ND	1.00	"	"	"	"	"	
Chloronaphthalene	ND	1.00	"	"	"	"	"	
Vitroaniline	ND	1.00	"	"	"	"	"	
enaphthylene	ND	1.00	"	"	"	"	"	
methyl phthalate	ND	1.00	"	"	"	"	"	
-Dinitrotoluene	ND	1.00	"	"	"	"	"	
enaphthene	ND	1.00	"	"	"	"	"	
Vitroaniline	ND	1.00	"	"	"	"	"	
-Dinitrophenol	ND	1.00	"	"	"	"	"	
benzofuran	ND	1.00	"	"	"	"	"	
-Dinitrotoluene	ND	1.00	"	"	"	"	"	
Nitrophenol	ND	1.00	"	"	"	"	"	
iorene	ND	1.00	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	1.00	"	"	"	"	"	
ethyl phthalate	ND	1.00	"	"	"	"	"	
Nitroaniline	ND	1.00	"	"	"	"	"	
-Dinitro-2-methylphenol	ND	1.00	"	"	"	"	"	
Nitrosodiphenylamine	ND	1.00	"	"	"	"	"	
Bromophenyl phenyl ether	ND	1.00	"	"	"	"	"	
xachlorobenzene	ND	1.00	"	"	"	"	"	
ntachlorophenol	ND	1.00	"	"	"	"	"	
enanthrene	ND	1.00	"	"	"	"	"	
thracene	ND	1.00	"	"	"	"	"	
rbazole	ND	1.00	"	"	"	"	"	
-n-butyl phthalate	ND	1.00	"	"	"	"	"	
ioranthene	ND	1.00	"	"	"	"	"	
nzidine	ND	5.00	"	"	"	"	"	
rene	ND	1.00	"	"	"	"	"	
tyl benzyl phthalate	ND	1.00	"	"	"	,,	"	
'-Dichlorobenzidine	ND ND	1.00	"	"	"	,,	"	
nzo (a) anthracene	ND ND	1.00	"	"	"	,,	"	
` '			"	,,	,,	,,	"	
rysene	ND ND	1.00	"	"	,,		"	
s(2-ethylhexyl)phthalate -n-octyl phthalate	ND ND	10.0 1.00	"	"	"	"	"	

Excelchem Environmental Lab.

Du Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 38 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P10-50 0603140-09 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compounds	s by GC/MS							_
Benzo (b) fluoranthene	ND	1.00	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
Benzo (k) fluoranthene	ND	1.00	"	"	"	"	"	
Benzo (a) pyrene	ND	1.00	"	"	"	"	"	
ndeno (1,2,3-cd) pyrene	ND	1.00	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	1.00	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1.00	"	"	"	"	"	
Surrogate: 2-Fluorophenol		%	% Recover	y Limits	10-1	10	"	S-
Surrogate: Phenol-d6		%	% Recovery	y Limits	10-1	10	"	S-
Surrogate: Nitrobenzene-d5		67.1 %	% Recover	y Limits	10-1	10	"	
Surrogate: 2-Fluorobiphenyl		76.0 %	% Recover	y Limits	10-1	10	"	
Surrogate: 2,4,6-Tribromophenol		75.4 %	% Recover	y Limits	10-1	10	"	
Surrogate: Terphenyl-dl4		89.8 %	% Recover	y Limits	10-1	10	"	
Method 8280								
,2,3,4,6,7,8-HpCDD	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
,2,3,4,6,7,8-HpCDF	ND	2.5	"	"	"	"	"	
,2,3,4,7,8,9-HpCDF	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,6,7,8-HxCDD	ND	2.5	"	"	n .	"	"	
,2,3,6,7,8-HxCDF	ND	2.5	"	"	n .	"	"	
,2,3,7,8,9-HxCDD	ND	2.5	"	"	n .	"	"	
,2,3,7,8,9-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDD	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDF	ND	2.5	"	"	"	"	"	
2,3,4,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
2,3,4,7,8-PeCDF	ND	2.5	"	"	"	"	"	
2,3,7,8-TCDD	ND	1.0	"	"	"	"	"	
2,3,7,8-TCDF	ND	1.0	"	"	"	"	"	
OCDD	ND	5.0	"	"	"	"	"	
OCDF	ND	5.0	"	"	"	"	"	
Total HpCDD	ND	2.5	"	"	"	"	"	
Total HpCDF	ND	2.5	"	"	"	"	"	
Total HxCDD	ND	2.5	"	"	"	"	"	
Total HxCDF	ND	2.5	"	"	"	"	"	
Total PeCDD	ND	2.5	,,	"	,,	,,	"	

Excelchem Environmental Lab.

Du Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 39 of 144

CIWMB

Project:

Disposal Gardens

P.O. Box 4025 / 1001 I Street Sacramento CA, 95812

Project Number: Project Manager: NA Dawn Owen Date Reported: 04/21/06 15:09

P10-50 0603140-09 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Method 8280								
Total PeCDF	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
Total TCDD	ND	1.0	"	"	"	"	"	
Total TCDF	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 40 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-05 0603140-10 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
(ylenes (total)	ND	0.010	"	"	"	"	"	
urrogate: Chlorobenzene		100 %	% Recovery	y Limits	70-	130	"	
METALS BY 6000/7000 SERIES								
ntimony	ND	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.1	1.0	"	"	"	"	"	
arium	333	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	0.7	0.5	"	"	"	04/05/06	"	
hromium	34.1	1.0	"	"	"	04/05/06	"	
obalt	5.4	5.0	"	"	"	"	"	
opper	19.8	2.0	"	"	"	"	"	
ead	4.5	1.0	"	"	"	"	"	
lercury	0.026	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Iolybdenum	ND	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	13.0	1.0	"	"	"	04/05/06	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	32.5	2.0	"	"	"	04/05/06	"	
inc	82.8	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	1.1	1.0	"	"	"	"	"	
22-C23	1.3	1.0	"	"	"	"	"	
224-C25	1.3	1.0	"	"	"	"	"	
26-C27	2.5	1.0	"	"	"	"	"	
28-C29	2.6	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

James

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 41 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-05 0603140-10 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbons	by FID							
C30-C31	2.4	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	2.0	1.0	"	"	"	"	"	
C34-C35	2.0	1.0	"	"	"	"	"	
C36-C37	2.0	1.0	"	"	"		"	
C38-C39	2.2	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	3.8	1.0	"	"	"	"	n .	
Pesticides/PCB by ECD								
Arochlor 1016	ND	0.500	mg/kg	APD0044	04/07/06	04/10/06	PCBs BY EPA 8082	
arochlor 1221	ND	0.500	"	"	"	"	"	
Arochlor 1232	ND	0.500	"	"	"	"	"	
arochlor 1242	ND	0.500	"	"	"	"	"	
Arochlor 1248	ND	0.500	"	"	"	"	"	
Arochlor 1254	ND	0.500	"	"	"	"	"	
arochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		110 %	% Recover	y Limits	50-1	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
I-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
Vitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Vaphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Iexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 42 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-05 0603140-10 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
miVolatile Organic Compounds								
Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Methylnaphthalene	ND	0.100	"	"	"	"	"	
xachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Vitroaniline	ND	0.100	"	"	"	"	"	
enaphthylene	ND	0.100	"	"	"	"	"	
methyl phthalate	ND	0.100	"	"	"	"	"	
-Dinitrotoluene	ND	0.100	"	"	"	"	"	
enaphthene	ND	0.100	"	"	"	"	"	
Vitroaniline	ND	0.100	"	"	"	"	"	
-Dinitrophenol	ND	0.100	"	"	"	"	"	
benzofuran	ND	0.100	"	"	"	"	"	
-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
iorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
ethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
xachlorobenzene	ND	0.100	"	"	"	"	"	
ntachlorophenol	ND	0.100	"	"	"	"	"	
enanthrene	ND	0.100	"	"	"	"	"	
thracene	ND	0.100	"	"	"	"	"	
rbazole	ND	0.100	"	"	"	"	"	
-n-butyl phthalate	ND	0.100	"	"	"	"	"	
ioranthene	ND	0.100	"	"	"	"	"	
nzidine	ND	0.500	"	"	"	"	"	
rene	ND	0.100	"	"	"	"	"	
tyl benzyl phthalate	ND	0.100	"	,,	,,	"	"	
'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
nzo (a) anthracene	ND ND	0.100	"	"	"	"	"	
` '	ND ND	0.100	"	,,	,,	,,	"	
rysene s(2-ethylhexyl)phthalate	ND ND		"	"	,,	,,	"	
-n-octyl phthalate	ND ND	1.00 0.100	"	,,	,,		"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 43 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-05 0603140-10 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s hv GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		64.1 %	% Recover	y Limits	10-1	110	"	
Surrogate: Phenol-d6		69.5 %	% Recover	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		65.9 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		72.5 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		82.6 %	% Recover	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		76.6 %	% Recover	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 44 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-10 0603140-11 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
•	result				•			11000
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
hylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"	"	
rrogate: Chlorobenzene		92.8 %	% Recover	y Limits	70-1	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	ND	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	ND	1.0	"	"	"	04/05/06	"	
arium	288	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	0.6	0.5	"	"	"	04/05/06	"	
hromium	27.7	1.0	"	"	"	"	"	
obalt	ND	5.0	"	"	"	"	"	
opper	14.0	2.0	"	"	"	04/05/06	"	
ead	2.2	1.0	"	"	"	"	"	
[ercury	0.024	0.010	"	APD0023	"	04/06/06	EPA 7471A	
olybdenum	ND	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	10.2	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	04/05/06	"	
lver	ND	2.0	"	"	"	"	"	
nallium	ND	2.0	"	"	"	"	"	
anadium	26.8	2.0	"	"	"	"	"	
inc	53.9	2.0	"	"	"	04/05/06	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	1.4	1.0	"	"	"	"	"	
18-C19	2.7	1.0	"	"	"	"	"	
20-C21	3.9	1.0	"	"	"	"	"	
22-C23	3.9	1.0	"	"	"	"	"	
24-C25	3.8	1.0	"	"	"	"	"	
26-C27	6.2	1.0	"	"	"	"	"	
28-C29	6.5	1.0	,,	,,	,,	,,	"	

Excelchem Environmental Lab.

Sph Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 45 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-10 0603140-11 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
					· · · · · ·			
Total Petroleum Hydrocarbons l	•							
C30-C31	5.4	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	4.1	1.0	"	"	"	"	"	
C34-C35	3.5	1.0	"	"	"	"	"	
C36-C37	3.2	1.0	"	"	"	"	"	
C38-C39	3.2	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	4.6	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
arochlor 1016	ND	1.00	mg/kg	APD0044	04/10/06	04/11/06	PCBs BY EPA 8082	
Arochlor 1221	ND	1.00	"	"	"	"	"	
Arochlor 1232	ND	1.00	"	"	"	"	"	
Arochlor 1242	ND	1.00	"	"	"	"	"	
Arochlor 1248	ND	1.00	"	"	"	"	"	
Arochlor 1254	ND	1.00	"	"	"	"	"	
Arochlor 1260	ND	1.00	"	"	"	"	"	
urrogate: Decachlorobiphenyl		107 %	% Recovery	y Limits	50-	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
N-Nitrosodimethylamine	ND	1.00	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	1.00	"	"	"	"	"	
henol	ND	1.00	"	"	"	"	"	
-Chlorophenol	ND	1.00	"	"	"	"	"	
Benzyl alcohol	ND	1.00	"	"	"	"	"	
,4-Dichlorobenzene	ND	1.00	"	"	"	"	"	
-Methylphenol	ND	1.00	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	1.00	"	"	"	"	"	
-Methylphenol	ND	1.00	"	"	"	"	"	
Vitrobenzene	ND	1.00	"	"	"	"	"	
sophorone	ND	1.00	"	"	"	"	"	
-Nitrophenol	ND	1.00	"	"	"	"	"	
,4-Dimethylphenol	ND	1.00	"	"	"	"		
is(2-chloroethoxy)methane	ND	1.00	"	"	"	"		
Senzoic acid	ND	3.00	"	"	"	"	"	
,4-Dichlorophenol	ND	1.00	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	1.00	"	"	"	"		
Vaphthalene	ND	1.00	"	"	"	"	"	
-Chloroaniline	ND	1.00	"	"	"	"	"	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 46 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-10 0603140-11 (Soil)

Date Analyzed		Date Prepared	Batch	Units	Reporting Limit	Result	Analyte
		1			Ziiiii	resur	, , , , , , , , , , , , , , , , , , ,
							SemiVolatile Organic Compounds by
04/12/06	04/10/06		APD0054	mg/kg	1.00	ND	4-Chloro-3-methylphenol
"	"		"	"	1.00	ND	2-Methylnaphthalene
"	"		"	"	1.00	ND	Hexachlorocyclopentadiene
"	"		"	"	1.00	ND	2,4,6-Trichlorophenol
"	"	"	"	"	1.00	ND	,4,5-Trichlorophenol
"	"		"	"	1.00	ND	-Chloronaphthalene
"	"	"	"	"	1.00	ND	-Nitroaniline
"	"	"	"	"	1.00	ND	Acenaphthylene
"	"	"	"	"	1.00	ND	Dimethyl phthalate
"	"	"	"	"	1.00	ND	,6-Dinitrotoluene
"	"	"	"	"	1.00	ND	Acenaphthene
"	"	"	"	"	1.00	ND	-Nitroaniline
"	"	"	"	"	1.00	ND	,4-Dinitrophenol
"	"	"	"	"	1.00	ND	Dibenzofuran
"	"	"	"	"	1.00	ND	,4-Dinitrotoluene
"	"	"	"	"	1.00	ND	-Nitrophenol
"	"	"	"	"	1.00	ND	luorene
"	"	"	"	n	1.00	ND	-Chlorophenyl phenyl ether
"	"	"	"	"	1.00	ND	Diethyl phthalate
"	"	"	"	"	1.00	ND	-Nitroaniline
"	"	"	"	"	1.00	ND	,6-Dinitro-2-methylphenol
"	"	"	"	"	1.00	ND	V-Nitrosodiphenylamine
"	"	"	"	"	1.00	ND	-Bromophenyl phenyl ether
"	"	"	"	"	1.00	ND	Iexachlorobenzene
"	"	"	"	"	1.00	ND	Pentachlorophenol
"	"	"	"	"	1.00	ND	Phenanthrene
"	"	"	"	"	1.00	ND	Anthracene
"	"	"	"	"	1.00	ND	Carbazole
"	"	"	"	"	1.00	ND	Di-n-butyl phthalate
"	"	"	"	"	1.00	ND	luoranthene
"	"	"	"	"	5.00	ND	Benzidine
"	"	"	"	"	1.00	ND	yrene
"	"	,,	"	"	1.00	ND	utyl benzyl phthalate
"	"	,,	"	"	1.00	ND ND	3'-Dichlorobenzidine
"	"	"	"	"	1.00	ND	Benzo (a) anthracene
"	"	,,	"	"			` '
"				"			•
	"			"			
" "	"	"	" "	"	1.00 1.00 1.00	ND ND ND	Chrysene Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate

Excelchem Environmental Lab.

Spe Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 47 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-10 0603140-11 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	ds by GC/MS							
Benzo (b) fluoranthene	ND	1.00	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
Benzo (k) fluoranthene	ND	1.00	"	"	"	"	"	
Benzo (a) pyrene	ND	1.00	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	1.00	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	1.00	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1.00	"	"	"	"	"	
Surrogate: 2-Fluorophenol		71.9 %	% Recover	y Limits	10-	110	"	
Surrogate: Phenol-d6		76.6 %	% Recover	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		89.2 %	% Recover	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		103 %	% Recover	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		91.0 %	% Recover	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		107 %	% Recover	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 48 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-15 0603140-12 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEV/TDHC L DID/FID								
STEX/TPHG by PID/FID denzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	mg/kg	AI C0133	03/31/00	"	"	
thylbenzene	ND	0.005	"	"	"	,,	"	
(ylenes (total)	ND	0.010	"	"	"	"	"	
urrogate: Chlorobenzene		96.0 %	% Recover	y Limits	70-1	130	"	
METALS BY 6000/7000 SERIES								
antimony	3.9	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	5.7	1.0	"	"	"	"	"	
arium	1220	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	5.7	0.5	"	"	"	04/05/06	"	
Chromium	109	1.0	"	"	"	04/05/06	"	
obalt	ND	5.0	"	"	"	"	"	
Copper	45.9	2.0	"	"	"	"	"	
ead	4.8	1.0	"	"	"	"	"	
l ercury	0.023	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Tolybdenum	4.2	1.0	"	APD0028	"	04/05/06	EPA 6010B	
lickel	34.1	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	3.1	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	04/05/06	"	
'anadium	108	2.0	"	"	"	"	"	
äne	63.6	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
210-C11	ND	1.0	"	"	"	"	"	
112-C13	ND	1.0	"	"	"	"	"	
C14-C15	2.2	1.0	"	"	"	"	"	
216-C17	5.9	1.0	"	"	"	"	"	
C18-C19	8.2	1.0	"	"	"	"	"	
220-C21	9.8	1.0	"	"	"	"	"	
222-C23	8.1	1.0	"	"	"	"	"	
224-C25	6.7	1.0	"	"	"	"	"	
226-C27	10.3	1.0	"	"	"	"	"	
228-C29	8.1	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 49 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-15 0603140-12 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbons l	-							
C30-C31	5.8	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	3.7	1.0	"	"	"	"	"	
C34-C35	2.8	1.0	"	"	"	"	"	
C36-C37	2.4	1.0	"	"	"	"	"	
C38-C39	2.2	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	3.0	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	0.0500	mg/kg	APD0044	04/10/06	04/10/06	PCBs BY EPA 8082	
arochlor 1221	ND	0.0500	"	"	"	"	"	
arochlor 1232	ND	0.0500	"	"	"	"	"	
Arochlor 1242	ND	0.0500	"	"	"	"	"	
Arochlor 1248	ND	0.0500	"	"	"	"	"	
Arochlor 1254	ND	0.0500	"	"	"	"	"	
Arochlor 1260	ND	0.0500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		92.5 %	% Recovery	y Limits	50-	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
I-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
Vitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Naphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Iexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som some

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 50 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-15 0603140-12 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
vrene	ND	0.100	"	"	"	"	"	
ıtyl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
hrysene	ND	0.100	"	"	"	"	"	
is(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"	"	
i-n-octyl phthalate	ND	0.100	"	"	,,	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 51 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-15 0603140-12 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		66.5 %	% Recover	y Limits	10-1	110	"	
Surrogate: Phenol-d6		72.5 %	% Recover	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		70.7 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		77.8 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		90.4 %	% Recover	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		89.8 %	% Recover	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 52 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-22 0603140-13 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/05/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"		
thylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"		
rrogate: Chlorobenzene		78.0 %	% Recovery	y Limits	70-1	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	ND	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.7	1.0	"	"	"	"	"	
arium	149	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	1.3	0.5	"	"	"	04/05/06	"	
hromium	19.2	1.0	"	"	"	"	"	
obalt	ND	5.0	"	"	"	04/05/06	"	
opper	17.4	2.0	"	"	"	"	"	
ead	1.8	1.0	"	"	"	"	"	
[ercury	0.010	0.010	"	APD0023	"	04/06/06	EPA 7471A	
olybdenum	ND	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	10.4	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	04/05/06	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	18.1	2.0	"	"	"	"	"	
inc	20.7	2.0	"	"	"	04/05/06	"	
otal Petroleum Hydrocarbons by FID	•							
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	1.0	1.0	"	"	"	"	"	
20-C21	1.7	1.0	"	"	"	"	"	
22-C23	1.8	1.0	"	"	"	"	"	
24-C25	1.7	1.0	"	"	"	"	"	
26-C27	2.1	1.0	"	"	"	"	"	
28-C29	1.9	1.0	"	,,	,,	,,	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 53 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-22 0603140-13 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons l	by FID							
C30-C31	1.6	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	1.1	1.0	"	"	"	"	"	
C34-C35	1.1	1.0	"	"	"	"	"	
C36-C37	1.0	1.0	"	"	"	"	"	
C38-C39	1.3	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	2.5	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	0.500	mg/kg	APD0044	04/10/06	04/11/06	PCBs BY EPA 8082	
Arochlor 1221	ND	0.500	"	"	"	"	"	
Arochlor 1232	ND	0.500	"	"	"	"	"	
Arochlor 1242	ND	0.500	"	"	"	"	"	
Arochlor 1248	ND	0.500	"	"	"	"	"	
Arochlor 1254	ND	0.500	"	"	"	"	"	
Arochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		105 %	% Recovery	y Limits	50-	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
N-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
Vitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"		
,4-Dimethylphenol	ND	0.100	"	"	"	"		
sis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"		
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Naphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 54 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-22 0603140-13 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
Chloro-3-methylphenol	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
methyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
benzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
ethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
enanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
rrene	ND	0.100	"	"	"	"	"	
ityl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
nrysene	ND	0.100	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND ND	0.100	"	"	"	"	"	
-n-octyl phthalate	ND ND	0.100	"	"	"	,,	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 55 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-22 0603140-13 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		63.5 %	% Recover	y Limits	10-1	110	"	
Surrogate: Phenol-d6		70.1 %	% Recover	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		69.5 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		76.0 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		83.2 %	% Recover	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		82.6 %	% Recover	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 56 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-25 0603140-14 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID							ED4 0021D/0015	
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010						
urrogate: Chlorobenzene		77.1 %	% Recovery	y Limits	70-2	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	1.1	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.2	1.0	"	"	"	04/05/06	"	
arium	211	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	2.0	0.5	"	"	"	04/05/06	"	
hromium	56.9	1.0	"	"	"	"	"	
obalt	7.1	5.0	"	"	"	"	"	
opper	12.5	2.0	"	"	"	"	"	
ead	ND	1.0	"	"	"	04/05/06	"	
lercury	0.057	0.010	"	APD0023	"	04/06/06	EPA 7471A	
lolybdenum	1.6	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	15.5	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	04/05/06	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	53.9	2.0	"	"	"	"	"	
inc	87.4	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID)							
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	1.1	1.0	"	"	"	"	"	
18-C19	1.2	1.0	"	"	"	"	"	
20-C21	1.7	1.0	"	"	"	"	"	
22-C23	1.4	1.0	"	"	"	"	"	
24-C25	1.1	1.0	"	"	"	"	"	
26-C27	1.1	1.0	"	"	"	"	"	
28-C29	1.0	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 57 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-25 0603140-14 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbons	by FID							
C30-C31	1.3	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C32-C33	1.2	1.0	"	"	"	"	"	
C34-C35	1.2	1.0	"	"	"	"	"	
C36-C37	ND	1.0	"	"	"	"	"	
C38-C39	1.3	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	1.7	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
rochlor 1016	ND	0.500	mg/kg	APD0044	04/10/06	04/11/06	PCBs BY EPA 8082	
Arochlor 1221	ND	0.500	"	"	"	"	"	
Arochlor 1232	ND	0.500	"	"	"	"	"	
Arochlor 1242	ND	0.500	"	"	"	"	"	
Arochlor 1248	ND	0.500	"	"	"	"	"	
crochlor 1254	ND	0.500	"	"	"	"	"	
rochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		106 %	% Recover	y Limits	50-	150	"	
emiVolatile Organic Compoun	ds by GC/MS							
I-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
V-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
litrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Iexachlorobutadiene	ND	0.100	"	"	"	"	"	
-Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Du Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 58 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-25 0603140-14 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
W. I. W. O I. G I		•			-			
emiVolatile Organic Compound Methylnaphthalene	ND	0.100	mg/kg	APD0054	04/10/06	04/12/06	EPA 8270C	
exachlorocyclopentadiene	ND	0.100	mg/kg	/ II D0034	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
vrene	ND	0.100	"	"	"	"	"	
ıtyl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
nrysene	ND	0.100	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"	"	
i-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 59 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-25 0603140-14 (Soil)

Result C/MS ND	0.100 0.100 0.100 0.100 0.100 58.1 % 68.3 % 65.3 % 74.9 % 82.6 % 80.2 %	mg/kg " " " " % Recovery % Recovery % Recovery % Recovery % Recovery	/ Limits / Limits / Limits / Limits	04/10/06 " " " " " " " 10-1 10-1 10-1 10-1	10 10 10 10	EPA 8270C	Notes
ND ND ND ND	0.100 0.100 0.100 0.100 58.1 % 68.3 % 65.3 % 74.9 % 82.6 %	" " " " " " " " " " " " " " " " " " "	/ Limits / Limits / Limits / Limits / Limits	" " " " 10-1 10-1 10-1 10-1	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND	0.100 0.100 0.100 0.100 58.1 % 68.3 % 65.3 % 74.9 % 82.6 %	" " " " " " " " " " " " " " " " " " "	/ Limits / Limits / Limits / Limits / Limits	" " " " 10-1 10-1 10-1 10-1	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND	0.100 0.100 0.100 58.1 % 68.3 % 65.3 % 74.9 % 82.6 %	" " " " " " " " " " " " " " " " " " "	/ Limits / Limits / Limits / Limits / Limits	10-1 10-1 10-1 10-1 10-1	" " " " " " " " " " " " " " " " " " "	" " " " "	
ND ND	0.100 0.100 58.1 % 68.3 % 65.3 % 74.9 % 82.6 %	" " " " " " " " " " " " " " " " " " "	/ Limits / Limits / Limits / Limits / Limits	10-1 10-1 10-1 10-1	" " " 10 10 10 10 10	" " " " " " " " " " " " " " " " " " " "	
ND	0.100 58.1 % 68.3 % 65.3 % 74.9 % 82.6 %	" Recovery R	/ Limits / Limits / Limits / Limits / Limits / Limits	" 10-1 10-1 10-1 10-1	" 10 10 10 10 10 10	" " " " " " " " " " " " " " " " " " " "	
	58.1 % 68.3 % 65.3 % 74.9 % 82.6 %	% Recovery % Recovery % Recovery % Recovery	/ Limits / Limits / Limits / Limits / Limits / Limits	10-1 10-1 10-1 10-1	10 10 10 10 10	" " " "	
	68.3 % 65.3 % 74.9 % 82.6 %	% Recovery % Recovery % Recovery	/ Limits / Limits / Limits / Limits	10-1 10-1 10-1	10 10 10 10	" "	
	65.3 % 74.9 % 82.6 %	% Recovery % Recovery	/ Limits / Limits / Limits	10-1 10-1 10-1	10 10 10	"	
	74.9 % 82.6 %	% Recovery	/ Limits / Limits	10-1 10-1	10	"	
	82.6 %	% Recovery	Limits	10-1	10	"	
		-					
	80.2 %	% Recovery	/ Limits	10-1	10	"	
						1.1.1.000	
			[none]				
				"		"	
				"		,,	
						"	
						"	
				"		"	
						"	
						"	
						"	
						"	
						"	
						"	
						"	
						"	
				"		"	
						"	
						"	
						"	
						"	
						"	
	ND N	ND 2.5 ND 1.0 ND 1.0 ND 1.0 ND 5.0 ND 5.0 ND 2.5	ND 2.5 " ND 1.0 " ND 1.0 " ND 1.0 " ND 1.0 " ND 5.0 " ND 5.0 " ND 2.5 "	ND 2.5 " " ND 1.0 " " ND 1.0 " " ND 1.0 " " ND 5.0 " " ND 5.0 " " ND 5.0 " " ND 2.5 " "	ND ND 2.5 """" ND 2.5 """" ND 2.5 """" ND 2.5 """ ND ND 1.0 """ ND ND 5.0 """ ND ND 2.5 """ ND ND 2.5 """ ND ND 2.5 """ ND ND 2.5 """ """ """ ND ND 2.5 "" """ """ ND ND 2.5 """ """ """ ND ND 2.5 """ """ """ ND ND 2.5 """ """ """ ND 2.5 """ """ """ """ ND 2.5 """ """ """ ND 2.5 """ """ """ """ """ """ """	ND 2.5 ND 2.5 ND ND 1.0 ND ND 1.0 ND ND 5.0 ND ND 5.0 ND ND 5.0 ND ND 2.5 ND ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ND 2.5 " " " " " " " " " " " " " " " " " " "

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 60 of 144

Disposal Gardens

CIWMB

Project:

P.O. Box 4025 / 1001 I Street

Project Number: NA
Project Manager: Dawn Owen

Date Reported:

Sacramento CA, 95812 Project Manager:

04/21/06 15:09

P11-25 0603140-14 (Soil)

Analyte	Result	Limit	Units	Batch	Prepared	Analyzed	Method	Notes
Method 8280								
Total TCDD	ND	1.0	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
Total TCDF	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 61 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-30 0603140-15 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
Benzene	ND	0.005	mg/kg	APC0155	03/31/06	04/05/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
(Yylenes (total)	ND	0.010	"	"	"	"	"	
urrogate: Chlorobenzene		54.2 %	% Recover	y Limits	70-2	130	"	S-Lo
METALS BY 6000/7000 SERIES								
antimony	1.5	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
arsenic	2.8	1.0	"	"	"	"	"	
arium	151	2.0	"	"	"	04/05/06	"	
Beryllium	ND	0.3	"	"	"	"	"	
Cadmium	2.6	0.5	"	"	"	04/05/06	"	
Chromium	64.4	1.0	"	"	"	04/05/06	"	
Cobalt	10.2	5.0	"	"	"	"	"	
Copper	45.3	2.0	"	"	"	"	"	
ead	1.8	1.0	"	"	"	"	"	
1 ercury	0.082	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Iolybdenum	7.5	1.0	"	APD0028	"	04/05/06	EPA 6010B	
lickel	52.0	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
'hallium	ND	2.0	"	"	"	"	"	
'anadium	62.0	2.0	"	"	"	04/05/06	"	
line	118	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
C7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
210-C11	ND	1.0	"	"	"	"	"	
212-C13	ND	1.0	"	"	"	"	"	
214-C15	ND	1.0	"	"	"	"	"	
216-C17	ND	1.0	"	"	"	"	"	
218-C19	ND	1.0	"	"	"	"	"	
C20-C21	1.0	1.0	"	"	"	"	"	
222-C23	ND	1.0	"	"	"	"	"	
224-C25	ND	1.0	"	"	"	"	"	
226-C27	ND	1.0	"	"	"	"	"	
228-C29	ND	1.0	"	"	"	"	"	
230-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Spen Donner

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 62 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-30 0603140-15 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons b	-						ED L COLT	
32-C33	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
34-C35	ND	1.0	"	"	"	"	"	
36-C37	ND	1.0	"	"	"	"	"	
38-C39	ND	1.0	"	"	"	"		
40, C41, C42, C43, C44	1.3	1.0	"	"	"	"	"	
esticides/PCB by ECD								
rochlor 1016	ND	0.250	mg/kg	APD0044	04/10/06	04/11/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.250	"	"	"	"	"	
rochlor 1232	ND	0.250	"	"	"	"	"	
rochlor 1242	ND	0.250	"	"	"	"	"	
rochlor 1248	ND	0.250	"	"	"	"	"	
rochlor 1254	ND	0.250	"	"	"	"	"	
rochlor 1260	ND	0.250	"	"	"	"	"	
urrogate: Decachlorobiphenyl		102 %	% Recovery	y Limits	50-1	150	"	
emiVolatile Organic Compound	ls by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
s(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
nenol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
itrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
Chloroaniline	ND	0.100	"	"	"	"	"	
exachlorobutadiene	ND	0.100	"	"	"	"	"	
Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	
Methylnaphthalene	ND	0.100	,,	,,	,,	,,	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 63 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-30 0603140-15 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
Iexachlorocyclopentadiene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
,4,6-Trichlorophenol	ND	0.100	"	"	"	"		
,4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
-Chloronaphthalene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
,4-Dinitrophenol	ND	0.100	"	"	"	"	"	
vibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
luorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
henanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100		"	"	"	"	
uoranthene	ND ND	0.100	,,	"	"	"	"	
enzidine	ND ND	0.100	,,	"	"	"	"	
			,,	,,	,,	,,	"	
yrene	ND ND	0.100 0.100	,,	,,	,,		"	
utyl benzyl phthalate			"	,,	,,		"	
3'-Dichlorobenzidine	ND	0.100	,,	"	"		"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
hrysene	ND	0.100						
is(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"		
i-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"		
enzo (k) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 64 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-30 0603140-15 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
77.1.71.0	1 CCMS							
emiVolatile Organic Compound enzo (a) pyrene	s by GC/MS ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
ndeno (1,2,3-cd) pyrene	ND	0.100	IIIg/Kg	"	U-1/10/00	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
enzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
urrogate: 2-Fluorophenol		62.9 %	% Recover	y Limits	10-1	110	"	
urrogate: Phenol-d6		68.3 %	% Recover		10-1	110	"	
urrogate: Nitrobenzene-d5		68.3 %	% Recover	y Limits	10-1	110	"	
urrogate: 2-Fluorobiphenyl		74.3 %	% Recover	y Limits	10-1	110	"	
urrogate: 2,4,6-Tribromophenol		86.8 %	% Recover	y Limits	10-1	110	"	
urrogate: Terphenyl-dl4		82.0 %	% Recover		10-1	110	"	
1ethod 8280								
,2,3,4,6,7,8-HpCDD	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
,2,3,4,6,7,8-HpCDF	ND	2.5	ug/Kg "	[Hone]	U-1/10/00	"	"	
,2,3,4,7,8,9-HpCDF	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,6,7,8-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,7,8,9-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,7,8,9-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDD	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDF	ND	2.5	"	"	"	"	"	
,3,4,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,3,4,7,8-PeCDF	ND	2.5	"	"	"	"	"	
,3,7,8-TCDD	ND	1.0	"	"	"	"	"	
,3,7,8-TCDF	ND	1.0	"	"	"	"	"	
OCDD	ND	5.0	"	"	"	"	"	
OCDF	ND	5.0	"	"	"	"	"	
otal HpCDD	ND	2.5	"	"	"	"	"	
otal HpCDF	ND	2.5	"	"	"	"	"	
otal HxCDD	ND	2.5	"	"	"	"	"	
otal HxCDF	ND	2.5	"	"	"	"	"	
otal PeCDD	ND	2.5	"	"	"	"	"	
otal PeCDF	ND	2.5	"	"	"	"	"	
otal TCDD	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 65 of 144

CIWMB

Project:

Disposal Gardens

P.O. Box 4025 / 1001 I Street Sacramento CA, 95812

Project Number: Project Manager: NA Dawn Owen Date Reported: 04/21/06 15:09

P11-30 0603140-15 (Soil)

		Reporting			Date	Date		
Analyte	Result	Limit	Units	Batch	Prepared	Analyzed	Method	Notes

Method 8280

Total TCDF ND 1.0 ug/Kg [none] 04/10/06 04/13/06 Method 8280

Excelchem Environmental Lab.

De Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 66 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-35 0603140-16 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID	ND	0.005	7	4 P.CO.1.5.5	02/21/06	0.4/0.4/0.6	EPA 8021B/8015m	
enzene oluene	ND ND	0.005 0.005	mg/kg	APC0155	03/31/06	04/04/06	E1 A 6021B/6013III	
thylbenzene	ND ND	0.005	,,	"	"	,,	"	
(ylenes (total)	ND ND	0.003	,,	"	"	"	"	
urrogate: Chlorobenzene	ND	99.2 %	% Recover	v Limite	70-		"	
IETALS BY 6000/7000 SERIES		<i>>>.2</i> / 0	76 RECOVE	y Lillius	70 1	.50		
ntimony	1.2	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	4.3	1.0	mg/kg	# II	U4/U4/UU !!	04/05/06	LFA 0010B	
arium	860	2.0	,,	"	"	04/05/06	"	
			,,	"	"	"	"	
eryllium 'admium	ND 3.0	0.3 0.5	,,	"	"	04/05/06	"	
aunnum hromium	98.0	1.0	,,	"	"	U4/U5/U6 "	"	
obalt	6.1	5.0	,,	"	"	"	"	
opper	34.3	2.0	,,	"	"	04/05/06	"	
ead	2.2	1.0	"	"	"	U4/U3/U0 "	"	
lercury	0.053	0.010	,,		"			
•			,,	APD0023	"	04/06/06	EPA 7471A	
lolybdenum · · · ·	1.7	1.0		APD0028	"	04/05/06	EPA 6010B	
ickel	38.0	1.0		"	"		"	
elenium	ND	2.0	.,	"	"	04/05/06	,,	
ilver	ND	2.0	,,	"	"	,,	"	
hallium anadium	ND 94.6	2.0 2.0	,,	"	"	,,	"	
			,,	"	"	,,	"	
inc	57.1	2.0						
otal Petroleum Hydrocarbons by FID 7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND ND	1.0	mg/kg	APD0008	04/03/06	U4/11/U6 "	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	ND	1.0	"	"	"	"	"	
22-C23	ND	1.0	"	"	"	"	"	
24-C25	ND	1.0	"	"	"	"	"	
26-C27	ND	1.0	"	"	"	"	"	
28-C29	ND	1.0	"	"	"	"	"	
30-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 67 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-35 0603140-16 (Soil)

Analyte	D14	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	N-4
Tillaryte	Result	Limit	Omto	Daten	Trepared	Amaryzea	Wiethod	Notes
otal Petroleum Hydrocarbons l	by FID							
C32-C33	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
C34-C35	ND	1.0	"	"	"	"	"	
C36-C37	1.1	1.0	"	"	"	"	"	
C38-C39	1.5	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	3.4	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
Arochlor 1016	ND	0.0500	mg/kg	APD0044	04/10/06	04/10/06	PCBs BY EPA 8082	
Arochlor 1221	ND	0.0500	"	"	"	"	"	
Arochlor 1232	ND	0.0500	"	"	"	"	"	
Arochlor 1242	ND	0.0500	"	"	"	"	"	
Arochlor 1248	ND	0.0500	"	"	"	"	"	
arochlor 1254	ND	0.0500	"	"	"	"	"	
Arochlor 1260	ND	0.0500	"	"	"	"	Ħ	
urrogate: Decachlorobiphenyl		92.5 %	% Recovery	y Limits	50-	150	"	
emiVolatile Organic Compound	ds by GC/MS							
I-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
sis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
Vitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
Benzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
Japhthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
Iexachlorobutadiene	ND	0.100	"	"	"	"	"	
-Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	
-Methylnaphthalene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 68 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-35 0603140-16 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
W 1 (2) O	1 CCNS							
emiVolatile Organic Compound exachlorocyclopentadiene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
/rene	ND	0.100	"	"	"	"	"	
atyl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND	0.100	"	,,	"	"	"	
nrysene	ND ND	0.100	"	,,	"	"	"	
s(2-ethylhexyl)phthalate	ND ND	0.100	"	,,	"	"	"	
i-n-octyl phthalate	ND ND	0.100	"	,,	"	"	"	
enzo (b) fluoranthene	ND ND	0.100	"	,,	"	"	"	
enzo (k) fluoranthene	ND ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som some

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 69 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-35 0603140-16 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	ds by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		65.9 %	% Recover	y Limits	10-1	110	"	
Surrogate: Phenol-d6		71.3 %	% Recover	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		71.9 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		76.6 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		80.2 %	% Recover	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		85.0 %	% Recover	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 70 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-40 0603140-17 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
pluene	ND	0.005	"	"	"	"	"	
hylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"	"	
rrogate: Chlorobenzene		107 %	% Recovery	y Limits	70-	130	"	
ETALS BY 6000/7000 SERIES								
ntimony	ND	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.1	1.0	"	"	"	"	"	
arium	49.5	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	04/05/06	"	
admium	ND	0.5	"	"	"	04/05/06	"	
hromium	9.0	1.0	"	"	"	"	"	
obalt	ND	5.0	"	"	"	"	"	
opper	8.2	2.0	"	"	"	"	"	
ead	ND	1.0	"	"	"	04/05/06	"	
ercury	0.021	0.010	"	APD0023	"	04/06/06	EPA 7471A	
olybdenum	ND	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ckel	4.0	1.0	"	"	"	"	"	
lenium	ND	2.0	"	"	"	"	"	
lver	ND	2.0	"	"	"	04/05/06	"	
nallium	ND	2.0	"	"	"	"	"	
anadium	8.5	2.0	"	"	"	"	"	
nc	13.6	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
0-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	ND	1.0	"	"	"	"	"	
22-C23	ND	1.0	"	"	"	"	"	
24-C25	ND	1.0	"	"	"	"	"	
26-C27	ND	1.0	"	"	"	"	"	
28-C29	ND	1.0	"	"	"	"	"	
30-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of

Laboratory Representative Page 71 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-40 0603140-17 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons b	-							
32-C33	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
34-C35	ND	1.0	"	"	"	"	"	
36-C37	ND	1.0	"	"	"	"	"	
38-C39	ND	1.0	"	"	"	"	"	
40, C41, C42, C43, C44	ND	1.0	"	"	"	"	"	
esticides/PCB by ECD								
rochlor 1016	ND	0.0500	mg/kg	APD0044	04/10/06	04/10/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.0500	"	"	"	"	"	
rochlor 1232	ND	0.0500	"	"	"	"	"	
rochlor 1242	ND	0.0500	"	"	"	"	"	
rochlor 1248	ND	0.0500	"	"	"	"	"	
rochlor 1254	ND	0.0500	"	"	"	"	"	
rochlor 1260	ND	0.0500	"	"	"	"	"	
rrogate: Decachlorobiphenyl		88.5 %	% Recover	y Limits	50-1	150	"	
emiVolatile Organic Compound	ls by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
s(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
nenol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"		"	
itrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"		"	
Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
s(2-chloroethoxy)methane	ND	0.100	"	"	"		"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
Chloroaniline	ND	0.100	"	"	"	"	"	
exachlorobutadiene	ND	0.100	"	"	"	"	"	
Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 72 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-40 0603140-17 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
					<u> </u>	<u> </u>		
semiVolatile Organic Compound Iexachlorocyclopentadiene	ls by GC/MS ND	0.100	ma/lra	A DD0054	04/10/06	04/11/06	EPA 8270C	
,4,6-Trichlorophenol	ND ND	0.100	mg/kg "	APD0054	04/10/06	04/11/06	"	
,4,5-Trichlorophenol	ND ND	0.100	"	"	"	"	"	
-Chloronaphthalene	ND ND	0.100	"	,,	,,	,,	"	
-Nitroaniline	ND ND	0.100	"	"	"	"	"	
Acenaphthylene	ND ND	0.100	"	,,	,,	,,	"	
Dimethyl phthalate	ND ND	0.100	"	,,	,,	,,	"	
	ND ND	0.100	,,	,,	,,	,,	"	
,6-Dinitrotoluene			"	,,	,,	,,	"	
Acenaphthene -Nitroaniline	ND ND	0.100 0.100	"	,,	"		"	
			"	"	"		"	
,4-Dinitrophenol	ND	0.100	,,	,,	,,		"	
Dibenzofuran	ND ND	0.100 0.100	,,	"	"	"	"	
,4-Dinitrotoluene			"	,,	"		"	
-Nitrophenol	ND	0.100	"	,,	,,		"	
luorene	ND	0.100	,,	"	"	"	"	
-Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
Diethyl phthalate	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100					"	
,6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodiphenylamine	ND	0.100	"	"	"	"		
-Bromophenyl phenyl ether	ND	0.100	"	"	"	"		
Iexachlorobenzene	ND	0.100	"	"	"	"		
entachlorophenol	ND	0.100	"	"	"	"	"	
henanthrene	ND	0.100	"	"	"	"	"	
Anthracene	ND	0.100	"	"	"	"	"	
Carbazole	ND	0.100	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.100	"	"	"	"	"	
luoranthene	ND	0.100	"	"	"	"	"	
Benzidine	ND	0.500	"	"	"	"	"	
yrene	ND	0.100	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.100	"	"	"	"	"	
,3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
Benzo (a) anthracene	ND	0.100	"	"	"	"	"	
Chrysene	ND	0.100	"	"	"	"	"	
sis(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"	"	
Di-n-octyl phthalate	ND	0.100	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.100	"	"	"	"	"	
Senzo (k) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Spe Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 73 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-40 0603140-17 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		55.7 %	% Recovery	y Limits	10-	110	"	
Surrogate: Phenol-d6		59.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		61.1 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		65.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		74.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		84.4 %	% Recovery	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 74 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-45 0603140-18 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
hylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"	"	
rrogate: Chlorobenzene		91.2 %	% Recover	y Limits	70-	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	ND	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	ND	1.0	"	"	"	"	"	
arium	46.5	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	ND	0.5	"	"	"	04/05/06	"	
hromium	10.9	1.0	"	"	"	04/05/06	"	
obalt	ND	5.0	"	"	"	"	"	
opper	6.2	2.0	"	"	"	"	"	
ead	ND	1.0	"	"	"	"	"	
lercury	0.011	0.010	"	APD0023	"	04/06/06	EPA 7471A	
olybdenum	ND	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	5.1	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	,,	"	"	
lver	ND	2.0	"	"	"	,,	"	
nallium	ND	2.0	"	"	"	04/05/06	"	
anadium	10.4	2.0	"	"	"	"	"	
inc	11.1	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	ND	1.0	"	"	"	"	"	
22-C23	ND	1.0	"	"	"	"	"	
24-C25	ND	1.0	"	"	"	"	"	
26-C27	ND	1.0	"	"	"	"	"	
28-C29	ND	1.0	"	"	"	"	"	
30-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Some Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 75 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-45 0603140-18 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbons by		1.0	//	4 BD 0000	0.4/02/06	0.4/11/0.6	EPA 8015m	
32-C33	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EFA 6015III	
34-C35	ND	1.0	"	,,	"	"	"	
236-C37	ND	1.0	"	"	"	"	"	
38-C39	ND	1.0	"	"	"	"	"	
40, C41, C42, C43, C44	ND	1.0	"	"	"	"		
esticides/PCB by ECD								
rochlor 1016	ND	0.0500	mg/kg	APD0044	04/10/06	04/10/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.0500	"	"	"	"	"	
rochlor 1232	ND	0.0500	"	"	"	"	"	
rochlor 1242	ND	0.0500	"	"	"	"	"	
crochlor 1248	ND	0.0500	"	"	"	"	"	
crochlor 1254	ND	0.0500	"	"	"	"	"	
rochlor 1260	ND	0.0500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		92.5 %	% Recover	y Limits	50-1	150	"	
emiVolatile Organic Compounds	s by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	0.182	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
itrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	,,	"	"	"	
enzoic acid	ND	0.300	"	,,	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"		"	
aphthalene	ND	0.100	"	"	"		"	
-Chloroaniline	ND	0.100	"	,,	"	"	"	
exachlorobutadiene	ND	0.100	"	,,	"	"	"	
-Chloro-3-methylphenol	ND	0.100	"	,,	,,	,,	"	

Excelchem Environmental Lab.

Some Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 76 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-45 0603140-18 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
exachlorocyclopentadiene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100	"	"	"	"	"	
uoranthene	ND	0.100	"	"	"	"	"	
enzidine	ND	0.500	"	"	"	"	"	
vrene	ND	0.100	"	"	"	"	"	
utyl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
enzo (a) anthracene	ND	0.100	"	,,	"	"	"	
nrysene	ND	0.100	"	,,	"	"	"	
s(2-ethylhexyl)phthalate	ND	0.100	"	,,	"	"	"	
i-n-octyl phthalate	ND ND	0.100	"	"	"	,,	"	
enzo (b) fluoranthene	ND ND	0.100	"	"	"	,,	"	
enzo (k) fluoranthene	ND ND	0.100	"	,,	,,	,,	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 77 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-45 0603140-18 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	nds by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		53.1 %	% Recover	y Limits	10-1	!10	"	
Surrogate: Phenol-d6		58.5 %	% Recover	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		59.3 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		65.3 %	% Recover	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		76.6 %	% Recover	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		85.0 %	% Recover	v Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 78 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-50 0603140-19 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"		
arrogate: Chlorobenzene		92.0 %	% Recover	y Limits	70-	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	ND	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
rsenic	1.1	1.0	"	"	"	"	"	
arium	32.6	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	ND	0.5	"	"	"	04/05/06	"	
hromium	8.6	1.0	"	"	"	"	"	
obalt	ND	5.0	"	"	"	04/05/06	"	
opper	7.3	2.0	"	"	"	"	"	
ead	ND	1.0	"	"	"	"	"	
[ercury	0.011	0.010	"	APD0023	"	04/06/06	EPA 7471A	
olybdenum	ND	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ickel	3.4	1.0	"	"	"	04/05/06	"	
elenium	ND	2.0	"	"	"	"	"	
lver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
anadium	8.4	2.0	"	"	"	04/05/06	"	
inc	9.8	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	ND	1.0	"	"	"	"	"	
22-C23	ND	1.0	"	"	"	"	"	
24-C25	ND	1.0	"	"	"	"	"	
26-C27	ND	1.0	"	"	"	"	"	
28-C29	ND	1.0	"	"	"	"	"	
30-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative

Page 79 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-50 0603140-19 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons b	•							
32-C33	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
34-C35	ND	1.0	"	"	"	"	"	
36-C37	ND	1.0	"	"	"	"		
38-C39	ND	1.0	"	"	"	"	"	
40, C41, C42, C43, C44	ND	1.0	"	"	"	"	"	
esticides/PCB by ECD								
rochlor 1016	ND	0.0500	mg/kg	APD0044	04/10/06	04/10/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.0500	"	"	"	"	"	
rochlor 1232	ND	0.0500	"	"	"	"	"	
rochlor 1242	ND	0.0500	"	"	"	"	"	
rochlor 1248	ND	0.0500	"	"	"	"	"	
rochlor 1254	ND	0.0500	"	"	"	"	"	
rochlor 1260	ND	0.0500	"	"	"	"	"	
rrogate: Decachlorobiphenyl		91.5 %	% Recovery	y Limits	50-1	150	"	
emiVolatile Organic Compound	ls by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
s(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
enol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
trobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
s(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	,,	"	"	"	
aphthalene	ND	0.100	"	,,	"	"	"	
Chloroaniline	ND	0.100	"	"	"	"	"	
exachlorobutadiene	ND	0.100	"	"	"		"	
Chloro-3-methylphenol	ND	0.100	"	,,	"	"	"	
emore e meary phonon	110	0.100						

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 80 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-50 0603140-19 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
					<u> </u>	<u> </u>		
semiVolatile Organic Compound Iexachlorocyclopentadiene	ls by GC/MS ND	0.100	ma/lra	A DD0054	04/10/06	04/11/06	EPA 8270C	
,4,6-Trichlorophenol	ND ND	0.100	mg/kg "	APD0054	04/10/06	04/11/06	"	
,4,5-Trichlorophenol	ND ND	0.100	"	"	"	"	"	
-Chloronaphthalene	ND ND	0.100	"	,,	,,	,,	"	
-Nitroaniline	ND ND	0.100	"	"	"	"	"	
Acenaphthylene	ND ND	0.100	"	,,	,,	,,	"	
Dimethyl phthalate	ND ND	0.100	"	,,	,,	,,	"	
	ND ND	0.100	,,	,,	,,	,,	"	
,6-Dinitrotoluene			"	,,	,,	,,	"	
Acenaphthene -Nitroaniline	ND ND	0.100 0.100	"	,,	"		"	
			"	"	"		"	
,4-Dinitrophenol	ND	0.100	,,	,,	,,		"	
Dibenzofuran	ND ND	0.100 0.100	,,	"	"	"	"	
,4-Dinitrotoluene			"	,,	"		"	
-Nitrophenol	ND	0.100	"	,,	"		"	
luorene	ND	0.100	,,	"	"	"	"	
-Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
Diethyl phthalate	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100					"	
,6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodiphenylamine	ND	0.100	"	"	"	"		
-Bromophenyl phenyl ether	ND	0.100	"	"	"	"		
Iexachlorobenzene	ND	0.100	"	"	"	"		
entachlorophenol	ND	0.100	"	"	"	"	"	
henanthrene	ND	0.100	"	"	"	"	"	
Anthracene	ND	0.100	"	"	"	"	"	
Carbazole	ND	0.100	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.100	"	"	"	"	"	
luoranthene	ND	0.100	"	"	"	"	"	
Benzidine	ND	0.500	"	"	"	"	"	
yrene	ND	0.100	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.100	"	"	"	"	"	
,3'-Dichlorobenzidine	ND	0.100	"	"	"	"	"	
Benzo (a) anthracene	ND	0.100	"	"	"	"	"	
Chrysene	ND	0.100	"	"	"	"	"	
sis(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"	"	
Di-n-octyl phthalate	ND	0.100	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.100	"	"	"	"	"	
Senzo (k) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 81 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P11-50 0603140-19 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	nds by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0054	04/10/06	04/11/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		55.7 %	% Recovery	y Limits	10-	110	"	
Surrogate: Phenol-d6		61.7 %	% Recovery	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		65.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		74.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		76.0 %	% Recovery	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		84.4 %	% Recovery	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 82 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-05 0603140-20 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
ΓΕΧ/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0155	03/31/06	04/04/06	EPA 8021B/8015m	
bluene	ND	0.005	"	"	"	"	"	
hylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"	"	
rrogate: Chlorobenzene		92.8 %	% Recover	y Limits	70-1	130	"	
ETALS BY 6000/7000 SERIES								
ntimony	ND	1.0	mg/kg	APD0028	04/04/06	04/05/06	EPA 6010B	
senic	ND	1.0	"	"	"	04/05/06	"	
rium	180	2.0	"	"	"	04/05/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	ND	0.5	"	"	"	04/05/06	"	
hromium	17.0	1.0	"	"	"	"	"	
obalt	ND	5.0	"	"	"	"	"	
opper	8.5	2.0	"	"	"	04/05/06	"	
ead	1.8	1.0	"	"	"	"	"	
ercury	0.035	0.010	"	APD0023	"	04/06/06	EPA 7471A	
olybdenum	ND	1.0	"	APD0028	"	04/05/06	EPA 6010B	
ckel	8.8	1.0	"	"	"	"	"	
lenium	ND	2.0	"	"	"	04/05/06	"	
lver	ND	2.0	"	"	"	"	"	
nallium	ND	2.0	"	"	"	"	"	
anadium	16.6	2.0	"	"	"	"	"	
ne	19.1	2.0	"	"	"	04/05/06	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"		
18-C19	ND	1.0	"	"	"	"		
20-C21	ND	1.0	"	"	"	"	"	
22-C23	ND	1.0	"	"	"	"	"	
24-C25	ND	1.0	"	"	"	"	"	
26-C27	ND	1.0	"	"		"	"	
28-C29	ND	1.0	"	"	"	"	"	
30-C31	ND	1.0	"	"	"	"		

Excelchem Environmental Lab.

custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of

Laboratory Representative Page 83 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-05 0603140-20 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
41D41 H1 1	l EID							
Total Petroleum Hydrocarbons 32-C33	ND ND	1.0	mg/kg	APD0008	04/03/06	04/11/06	EPA 8015m	
34-C35	ND ND	1.0	mg/kg	AFD0006	U4/U3/UU	04/11/00	"	
36-C37	ND	1.0	,,	"	,,	,,	"	
38-C39	ND	1.0		,,	,,	"	"	
40, C41, C42, C43, C44	ND	1.0	"	,,	"	,,	"	
esticides/PCB by ECD	ND	1.0						
rochlor 1016	ND	0.0500	mg/kg	APD0044	04/10/06	04/10/06	PCBs BY EPA 8082	
rochlor 1221	ND ND	0.0500	mg/kg	Ar D0044	04/10/00	04/10/00	"	
rochlor 1232	ND ND	0.0500	"	,,	"	"	"	
rochlor 1242	ND ND	0.0500	"	,,	"	"	"	
rochlor 1248	ND ND	0.0500	,,	,,	"	"	"	
rochlor 1254	ND ND	0.0500	,,	,,	"	"	"	
rochlor 1260	ND ND	0.0500	,,	"	"	"	"	
rrogate: Decachlorobiphenyl	ND	88.0 %	0/ D	T: :	50-1	150	"	
	LL COME	00.0 /0	% Recovery	y Limits	30-1	150		
emiVolatile Organic Compound		0.100	7	4 PD 00 5 4	0.4/11/06	0.4/12/06	EPA 8270C	
Nitrosodimethylamine	ND	0.100	mg/kg "	APD0054	04/11/06	04/12/06	EFA 82/0C	
s(2-chloroethyl)ether	ND	0.100	,,	"	"	"	"	
enol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	,,	,,	"	"	"	
enzyl alcohol	ND	0.100	,,	"		"	"	
4-Dichlorobenzene	ND	0.100	,,	"	"	"	"	
Methylphenol	ND	0.100	"	"	"			
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"		
Methylphenol	ND	0.100	"	"	"	"		
itrobenzene	ND	0.100		"	"	"		
ophorone	ND	0.100	"	"	"	"		
Nitrophenol	ND	0.100	"	"	"	"		
4-Dimethylphenol	ND	0.100	"	"	"	"		
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
Chloroaniline	ND	0.100	"	"	"	"	"	
exachlorobutadiene	ND	0.100	"	"	"	"	"	
Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	
Methylnaphthalene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 84 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-05 0603140-20 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
Iexachlorocyclopentadiene	ND	0.100	mg/kg	APD0054	04/11/06	04/12/06	EPA 8270C	
,4,6-Trichlorophenol	ND	0.100	"	"	"	"		
,4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
-Chloronaphthalene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
,4-Dinitrophenol	ND	0.100	"	"	"	"	"	
vibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
luorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
-Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
henanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100		"	"	"	"	
uoranthene	ND ND	0.100	,,	"	"	"	"	
enzidine	ND ND	0.100	,,	"	"	"	"	
			,,	,,	,,	,,	"	
yrene	ND ND	0.100 0.100	,,	,,	,,		"	
utyl benzyl phthalate			"	,,	,,		"	
3'-Dichlorobenzidine	ND	0.100	,,	"	"		"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
hrysene	ND	0.100	"				"	
s(2-ethylhexyl)phthalate	ND	0.100		"	"	"		
i-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"		
enzo (k) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 85 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-05 0603140-20 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	nds by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0054	04/11/06	04/12/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54.3 %	% Recover	y Limits	10-	110	"	
Surrogate: Phenol-d6		60.5 %	% Recover	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		62.9 %	% Recover	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		67.7 %	% Recover	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		78.4 %	% Recover	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		82.6 %	% Recover	v Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 86 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-10 0603140-21 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
STEX/TPHG by PID/FID								
denzene	ND	0.005	mg/kg	APC0156	03/31/06	04/06/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
Zylenes (total)	ND	0.010	"	"	"	"		
urrogate: Chlorobenzene		74.7 %	% Recover	y Limits	70-	130	"	
METALS BY 6000/7000 SERIES								
ntimony	3.8	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
rsenic	3.4	1.0	"	"	"	"	"	
Sarium	61.5	2.0	"	"	"	04/06/06	"	
Beryllium	ND	0.3	"	"	"	04/06/06	"	
Cadmium	1.0	0.5	"	"	"	04/06/06	"	
Chromium	46.9	1.0	"	"	"	"	"	
obalt	6.9	5.0	"	"	"	"	"	
opper	33.8	2.0	"	"	"	"	"	
ead	2.9	1.0	"	"	"	"	"	
Iercury	0.046	0.010	"	APD0023	"	04/06/06	EPA 7471A	
lolybdenum	4.1	1.0	"	APD0028	"	04/06/06	EPA 6010B	
ickel	22.6	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	04/06/06	"	
anadium	43.3	2.0	"	"	"	"	"	
inc	72.1	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	ND	1.0	"	"	"	"	"	
22-C23	ND	1.0	"	"	"	"	"	
24-C25	ND	1.0	"	"	"	"	"	
226-C27	ND	1.0	"	"	"	"	"	
228-C29	ND	1.0	"	"	"	"	"	
230-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Sph Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 87 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-10 0603140-21 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Setal Detrodorous Headers and social	FID							
Cotal Petroleum Hydrocarbons I 232-C33	ND ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
34-C35	ND	1.0	IIIg/Kg	ArD0011	04/04/00	04/12/00	"	
236-C37	ND	1.0	"	"	"	,,	"	
38-C39	ND	1.0	,,	"	"	,,	"	
40, C41, C42, C43, C44	ND	1.0	,,	"	"	,,	"	
	ND	1.0						
esticides/PCB by ECD							DCD DV EDA 0002	
rochlor 1016	ND	0.250	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.250	"	"	"	"	"	
rochlor 1232	ND	0.250	"	"	"	"		
rochlor 1242	ND	0.250	"	"	"	"	"	
rochlor 1248	ND	0.250	"	"	"	"	"	
rochlor 1254	ND	0.250	"	"	"	"	"	
rochlor 1260	ND	0.250	"	"	"	"		
rrogate: Decachlorobiphenyl		99.0 %	% Recover	y Limits	50-1	150	"	
emiVolatile Organic Compound	ds by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0069	04/10/06	04/12/06	EPA 8270C	
s(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
nenol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
itrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
Chloroaniline	ND	0.100	"	"	"	"	"	
exachlorobutadiene	ND	0.100	"	"	"	"	"	
Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	
Methylnaphthalene							"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 88 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-10 0603140-21 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
Iexachlorocyclopentadiene	ND	0.100	mg/kg	APD0069	04/10/06	04/12/06	EPA 8270C	
,4,6-Trichlorophenol	ND	0.100	"	"	"	"		
,4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
-Chloronaphthalene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
luorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	,,	"	"	"	
henanthrene	ND	0.100		"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND ND	0.100	,,	,,	"	"	"	
uoranthene	ND ND	0.100	"	,,	"	"	"	
enzidine	ND ND	0.100	"	,,	,,		"	
			"	,,	,,		"	
yrene	ND	0.100	,,	"	"	"	"	
utyl benzyl phthalate	ND	0.100	"	"	"	"	"	
3'-Dichlorobenzidine	ND	0.100	"					
enzo (a) anthracene	ND	0.100		"	"	"	"	
hrysene	ND	0.100	"	"	"	"		
is(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"		
i-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"	"	
enzo (k) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 89 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-10 0603140-21 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compounds	s by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0069	04/10/06	04/12/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		49.7 %	% Recovery	y Limits	10-1	110	"	
Surrogate: Phenol-d6		53.5 %	% Recovery	y Limits	10-1	110	"	
Surrogate: Nitrobenzene-d5		52.6 %	% Recovery	y Limits	10-1	110	"	
Surrogate: 2-Fluorobiphenyl		58.4 %	% Recovery	y Limits	10-1	110	"	
Surrogate: 2,4,6-Tribromophenol		76.0 %	% Recovery	y Limits	10-1	110	"	
Surrogate: Terphenyl-dl4		76.0 %	% Recovery	y Limits	10-1	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 90 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-15 0603140-22 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
STEX/TPHG by PID/FID							PR 1 0001 P 1001 F	
Benzene	ND	0.005	mg/kg	APC0156	03/31/06	04/06/06	EPA 8021B/8015m	
Coluene	ND	0.005	"	"	"	"	"	
thylbenzene	ND	0.005	"	"	"	"		
Tylenes (total)	ND	0.010		"	"	"		
urrogate: Chlorobenzene		76.7 %	% Recovery	y Limits	70	130	"	
METALS BY 6000/7000 SERIES								
ntimony	3.1	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
arsenic	3.3	1.0	"	"	"	"	"	
Sarium Sa	405	2.0	"	"	"	04/06/06	"	
Beryllium	ND	0.3	"	"	"	04/06/06	"	
Cadmium	3.1	0.5	"	"	"	04/06/06	"	
Chromium	81.2	1.0	"	"	"	"	"	
Cobalt	7.3	5.0	"	"	"	"	"	
Copper	29.1	2.0	"	"	"	"	"	
ead	2.5	1.0	"	"	"	"	"	
1 ercury	0.064	0.010	"	APD0023	"	04/06/06	EPA 7471A	
l olybdenum	6.7	1.0	"	APD0028	"	04/06/06	EPA 6010B	
lickel	30.7	1.0	"	"	"	"	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
'hallium	ND	2.0	"	"	"	04/06/06	"	
['] anadium	76.5	2.0	"	"	"	"	"	
line	79.8	2.0	"	"	"	"	"	
Sotal Petroleum Hydrocarbons by FID								
77, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
210-C11	ND	1.0	"	"	"	"	"	
C12-C13	ND	1.0	"	"	"	"	"	
C14-C15	ND	1.0	"	"	"	"	"	
C16-C17	ND	1.0	"	"	"	"	"	
18-C19	ND	1.0	"	"	"	"	"	
20-C21	ND	1.0	"	"	"	"	"	
C22-C23	1.0	1.0	"	"	"	"	"	
C24-C25	1.2	1.0	"	"	"	"	"	
C26-C27	1.2	1.0	"	"	"	"	"	
C28-C29	1.3	1.0	"	,,		"	"	

Excelchem Environmental Lab.

custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of

Laboratory Representative Page 91 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-15 0603140-22 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
	I EID							
Total Petroleum Hydrocarbons C30-C31	1.2	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
232-C33			mg/kg	AI D0011	04/04/00	04/12/00	E1 A 6015III	
334-C35	ND ND	1.0 1.0	"	,,	"		"	
236-C37	ND ND	1.0	"	,,	,,	,	"	
38-C39	ND ND	1.0	"	,,	"	,,	"	
40, C41, C42, C43, C44	1.2	1.0	"	,,	,,	,,	"	
	1,2	1.0						
esticides/PCB by ECD	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.500					PCBs BY EPA 8082	
rochlor 1016	ND	0.500	mg/kg	APD0049	04/10/06	04/11/06	1 CDS D1 EFA 0002	
rochlor 1221	ND	0.500	"	"	"	"	"	
rochlor 1232	ND	0.500	"	"	"	"	"	
Arochlor 1242	ND	0.500	"	"	"	"	"	
rochlor 1248	ND	0.500	"	"	"	"	"	
crochlor 1254	ND	0.500	"	"		"	"	
rochlor 1260	ND	0.500						
urrogate: Decachlorobiphenyl		107 %	% Recovery	y Limits	50-1	150	"	
emiVolatile Organic Compoun	ds by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
fitrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
exachlorobutadiene	ND	0.100	"	"	"	"	"	
CAACIIIOIOOUIAUICIIC	IND	0.100						

Excelchem Environmental Lab.

John Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 92 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-15 0603140-22 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							ED + 0250G	
-Methylnaphthalene	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"		
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
ethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100		"	"	"	"	
uoranthene	ND	0.100		"	"	"	"	
enzidine	ND ND	0.100	,,	,,	"	,,	"	
vrene	ND ND	0.300	,,	"	"	"	"	
	ND ND	0.100	"	,,	,,		"	
ityl benzyl phthalate			"	,,	,,		"	
3'-Dichlorobenzidine	ND	0.100	,,	"	"	"	"	
enzo (a) anthracene	ND	0.100	,,	"	"	"	,,	
nrysene	ND	0.100						
s(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"		
-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 93 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-15 0603140-22 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compounds b	oy GC/MS							
Benzo (k) fluoranthene	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		46.9 %	% Recover	y Limits	10-	110	"	
Surrogate: Phenol-d6		56.8 %	% Recover	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		56.2 %	% Recover	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		64.7 %	% Recover	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		79.6 %	% Recover	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		80.8 %	% Recover	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 94 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-20 0603140-23 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
STEX/TPHG by PID/FID		0.005					EPA 8021B/8015m	
enzene	ND	0.005	mg/kg	APC0156	03/31/06	04/06/06	EFA 8021B/8013III	
oluene	ND ND	0.005 0.005	"	"	"	"	"	
thylbenzene	ND ND	0.003	,,	,,	"	"	"	
Cylenes (total) currogate: Chlorobenzene	ND	65.6 %	% Recovery		70		"	S-L
METALS BY 6000/7000 SERIES		05.0 / 0	70 Recover	y Lillits	, ,			5.2
antimony	2.1	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
rsenic	2.2	1.0	"	"	"	"	"	
arium	125	2.0	,,	,,	"	04/06/06	"	
eryllium	ND	0.3	"	,,	"	"	"	
Cadmium	2.1	0.5	"	,,	"	04/06/06	"	
Chromium	54.1	1.0	"	"	"	"	"	
Cobalt	6.4	5.0	"	"	"	04/06/06	"	
Copper	42.4	2.0	"	"	"	"	"	
ead	1.0	1.0	"	,,	"	"	"	
1ercury	0.068	0.010	"	APD0023	"	04/06/06	EPA 7471A	
1olybdenum	3.5	1.0	"	APD0028	"	04/06/06	EPA 6010B	
lickel	23.4	1.0	"	"	"	04/06/06	"	
elenium	ND	2.0	"	,,	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	"	"	
'anadium	51.2	2.0	"	"	"	04/06/06	"	
inc	112	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	2.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
210-C11	ND	2.0	"	"	"	"	"	
212-C13	ND	2.0	"	"	"	"	"	
114-C15	ND	2.0	"	"	"	"	"	
216-C17	8.3	2.0	"	"	"	"	"	
218-C19	16.5	2.0	"	"	"	"	"	
220-C21	34.7	2.0	"	"	"	"	"	
222-C23	48.9	2.0	"	"	"	"	"	
C24-C25	70.0	2.0	"	"	"	"	"	
C26-C27	86.6	2.0	"	"	"	"	"	
228-C29	100	2.0	"	"	"	"	"	

Excelchem Environmental Lab.

Spe Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 95 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-20 0603140-23 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons	by FID							
30-C31	98.4	2.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C32-C33	75.3	2.0	"	"	"	"	"	
C34-C35	67.9	2.0	"	"	"	"	"	
236-C37	58.3	2.0	"	"	"	"	"	
238-C39	54.5	2.0	"	"	"	"	"	
C40, C41, C42, C43, C44	65.0	2.0	"	"	"	"	"	
esticides/PCB by ECD								
crochlor 1016	ND	0.250	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.250	"	"	"	"	"	
crochlor 1232	ND	0.250	"	"	"	"	"	
rochlor 1242	ND	0.250	"	"	"	"	"	
crochlor 1248	ND	0.250	"	"	"	"	"	
crochlor 1254	ND	0.250	"	"	"	"	"	
crochlor 1260	ND	0.250	"	"	"	"	"	
urrogate: Decachlorobiphenyl		106 %	% Recovery	y Limits	50-	150	"	
emiVolatile Organic Compoun	ds by GC/MS							
I-Nitrosodimethylamine	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
sis(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
litrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
,4-Dimethylphenol	ND	0.100	"	"	"	"	"	
sis(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
,4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
lexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 96 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-20 0603140-23 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							TD 1 00 00 0	
-Chloro-3-methylphenol	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
-Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND ND	0.100		"	"	"	"	
arbazole	ND ND	0.100	,,	"	"	"	"	
i-n-butyl phthalate	ND ND	0.100	,,	"	"	"	"	
uoranthene			,,	,,	,,	,,	"	
uorantnene enzidine	ND ND	0.100 0.500	,,	,,	,,		"	
			"	,,	,,		"	
rene	ND	0.100	,,	"	"		"	
atyl benzyl phthalate	ND	0.100	"	"	"	"	,,	
3'-Dichlorobenzidine	ND	0.100					"	
enzo (a) anthracene	ND	0.100	"	"	"	"		
nrysene	ND	0.100	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"		
-n-octyl phthalate	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 97 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-20 0603140-23 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compounds		0.100		1 PD 00 C0	04/10/06	0.4/1.2/0.6	EPA 8270C	
enzo (b) fluoranthene	ND ND	0.100	mg/kg "	APD0069	04/10/06	04/13/06	EI A 62/0C	
enzo (k) fluoranthene		0.100	"	,,			"	
enzo (a) pyrene ndeno (1,2,3-cd) pyrene	ND ND	0.100 0.100	"	"			"	
hibenz (a,h) anthracene	ND ND	0.100	"	,,	"	"	"	
enzo (g,h,i) perylene	ND ND	0.100	"	"	"	"	"	
urrogate: 2-Fluorophenol	ND	52.8 %	% Recovery		10-1		"	
urrogate: Phenol-d6		61.1 %			10-1		"	
_		63.5 %	% Recovery		10-1		"	
urrogate: Nitrobenzene-d5			% Recovery	•			"	
urrogate: 2-Fluorobiphenyl		70.1 %	% Recovery		10-1			
urrogate: 2,4,6-Tribromophenol		83.8 %	% Recovery	y Limits	10-1	10	"	
urrogate: Terphenyl-dl4		86.8 %	% Recovery	y Limits	10-1	10	"	
Tethod 8280								
,2,3,4,6,7,8-HpCDD	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
,2,3,4,6,7,8-HpCDF	ND	2.5	"	"	"	"	"	
,2,3,4,7,8,9-HpCDF	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDF	ND	2.5	"	"	"	"	"	
2,3,6,7,8-HxCDD	ND	2.5	"	"	"	"	"	
2,3,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,7,8,9-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,7,8,9-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDD	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDF	ND	2.5	"	"	"	"	"	
3,4,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,3,4,7,8-PeCDF	ND	2.5	"	"	"	"	"	
,3,7,8-TCDD	ND	1.0	"	"	"	"	"	
,3,7,8-TCDF	ND	1.0	"	"	"	"	"	
CDD	ND	5.0	"	"	"	"	"	
CDF	ND	5.0	"	"	"	"	"	
otal HpCDD	ND	2.5	"	"	"	"	"	
otal HpCDF	ND	2.5	"	"	"	"	"	
otal HxCDD	ND	2.5	"	"	"	"	"	
otal HxCDF	ND	2.5	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 98 of 144

CIWMB

P.O. Box 4025 / 1001 I Street Sacramento CA, 95812 Project: Disposal Gardens

Project Number: NA

Project Manager: Dawn Owen

Date Reported: 04/21/06 15:09

P2-20 0603140-23 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Method 8280								
Total PeCDF	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
Total TCDD	ND	1.0	"	"	"	"	"	
Total TCDF	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 99 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-25 0603140-24 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
BTEX/TPHG by PID/FID								
Benzene	ND	0.005	mg/kg	APC0156	03/31/06	04/06/06	EPA 8021B/8015m	
Toluene	ND	0.005	"	"	"	"	"	
Ethylbenzene	ND	0.005	"	"	"	"	"	
Xylenes (total)	ND	0.010	"	"	"	"	"	
Surrogate: Chlorobenzene		52.6 %	% Recover	y Limits	70-	130	"	S-LO
METALS BY 6000/7000 SERIES								
Antimony	1.3	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
Arsenic	1.3	1.0	"	"	"	04/06/06	"	
Barium	26.8	2.0	"	"	"	04/06/06	"	
Beryllium	ND	0.3	"	"	"	"	"	
Cadmium	2.7	0.5	"	"	"	04/06/06	"	
Chromium	44.6	1.0	"	"	"	"	"	
Cobalt	ND	5.0	"	"	"	"	"	
Copper	7.8	2.0	"	"	"	"	"	
Lead	ND	1.0	"	"	"	04/06/06	"	
Mercury	0.041	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Molybdenum	3.4	1.0	"	APD0028	"	04/06/06	EPA 6010B	
Nickel	13.2	1.0	"	"	"	"	"	
Selenium	ND	2.0	"	"	"	"	"	
Silver	ND	2.0	"	"	"	04/06/06	"	
Γhallium	ND	2.0	"	"	"	"	"	
Vanadium	42.4	2.0	"	"	"	"	"	
Zinc	56.0	2.0	"	"	"	"	n .	
Total Petroleum Hydrocarbons by FID								
C7, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C10-C11	ND	1.0	"	"	"	"	"	
C12-C13	ND	1.0	"	"	"	"	"	
C14-C15	ND	1.0	"	"	"	"	"	
C16-C17	ND	1.0	"	"	"	"	"	
C18-C19	ND	1.0	"	"	"	"	"	
C20-C21	ND	1.0	"	"	"	"	"	
C22-C23	ND	1.0	"	"	"	"	"	
C24-C25	ND	1.0	"	"	"	"	"	
C26-C27	ND	1.0	"	"	"	"	"	
C28-C29	ND	1.0	"	"	"	"	"	
C30-C31	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 100 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-25 0603140-24 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
otal Petroleum Hydrocarbons l	by FID							
32-C33	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
34-C35	ND	1.0	"	,,	"	"	"	
36-C37	ND	1.0	"	"	"	"	"	
38-C39	ND	1.0	"	"	"	"	"	
40, C41, C42, C43, C44	ND	1.0	"	"	"	"	"	
esticides/PCB by ECD								
rochlor 1016	ND	0.500	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
rochlor 1221	ND	0.500	"	"	"	"	"	
rochlor 1232	ND	0.500	"	"	"	"	"	
rochlor 1242	ND	0.500	"	"	"	"	"	
rochlor 1248	ND	0.500	"	"	"	"	"	
rochlor 1254	ND	0.500	"	"	"	"	"	
rochlor 1260	ND	0.500	"	"	"	"	"	
rrogate: Decachlorobiphenyl		112 %	% Recover	y Limits	50-1	150	"	
emiVolatile Organic Compound	ds by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
s(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
nenol	ND	0.100	"	"	"	"	"	
Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
Methylphenol	ND	0.100	"	"	"	"	"	
itrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
Chloroaniline	ND	0.100	"	"	"		"	
exachlorobutadiene	ND	0.100	"	"	"	"	"	
Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	
-Methylnaphthalene			"				,,	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 101 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-25 0603140-24 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound								
Iexachlorocyclopentadiene	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
,4,6-Trichlorophenol	ND	0.100	"	"	"	"		
,4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
-Chloronaphthalene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
-Nitroaniline	ND	0.100	"	"	"	"	"	
,4-Dinitrophenol	ND	0.100	"	"	"	"	"	
vibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
luorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
henanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100		"	"	"	"	
uoranthene	ND ND	0.100	,,	"	"	"	"	
enzidine	ND ND	0.100	,,	"	"	"	"	
			,,	,,	,,	,,	"	
yrene	ND ND	0.100 0.100	,,	,,	,,		"	
utyl benzyl phthalate			"	,,	,,		"	
3'-Dichlorobenzidine	ND	0.100	,,	"	"		"	
enzo (a) anthracene	ND	0.100	"	"	"	"	"	
hrysene	ND	0.100					"	
s(2-ethylhexyl)phthalate	ND	0.100		"	"	"		
i-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"		
enzo (k) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 102 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-25 0603140-24 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	ds by GC/MS							
Benzo (a) pyrene	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		40.4 %	% Recovery	y Limits	10-	!10	"	
Surrogate: Phenol-d6		49.2 %	% Recovery	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		45.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		58.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		75.4 %	% Recovery	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		77.2 %	% Recovery	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 103 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-30 0603140-25 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
BTEX/TPHG by PID/FID	ND	0.005	Л	1 DC0156	02/21/06	0.4/0.6/0.6	EPA 8021B/8015m	
Benzene Foluene	ND ND	0.005 0.005	mg/kg "	APC0156	03/31/06	04/06/06	ELA 6021B/6013III	
Ethylbenzene	ND ND	0.005	"	"	"	"	"	
Xylenes (total)	ND	0.003	,,	,,	"	"	"	
Surrogate: Chlorobenzene	ND	63.2 %	% Recover	ı I imite	70	130	"	S-Lo
METALS BY 6000/7000 SERIES			70 Recover	Limits				
Antimony	2.5	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
Arsenic	4.1	1.0	"	"	"	"	"	
Barium	158	2.0	"	"	"	04/06/06	"	
Beryllium	ND	0.3	"	"	"	"	"	
Cadmium	2.1	0.5	"	"	"	04/06/06	"	
Chromium	60.9	1.0	"	"	"	04/06/06	"	
Cobalt	7.0	5.0	"	"	"	"	"	
Copper	18.0	2.0	"	"	"	"	"	
Lead	ND	1.0	"	"	"	"	"	
Mercury	0.067	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Molybdenum	2.1	1.0	"	APD0028	"	04/06/06	EPA 6010B	
Nickel	25.1	1.0	"	"	"	04/06/06	"	
Selenium	ND	2.0	"	"	"	"	"	
Silver	ND	2.0	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	
Vanadium	57.6	2.0	"	"	"	04/06/06	"	
Zinc	89.7	2.0	"	"	"	"	"	
Total Petroleum Hydrocarbons by FID								
C7, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C10-C11	ND	1.0	"	"	"	"	"	
C12-C13	ND	1.0	"	"	"	"	"	
C14-C15	ND	1.0	"	"	"	"	"	
C16-C17	1.1	1.0	"	"	"	"	"	
C18-C19	1.5	1.0	"	"	"	"	"	
C20-C21	2.0	1.0	"	"	"	"	"	
C22-C23	1.8	1.0	"	"	"	"	"	
C24-C25	1.8	1.0	"	"	"	"	"	
C26-C27	1.0	1.0	"	"	"	"	"	
C28-C29	1.2	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Sph Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 104 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-30 0603140-25 (Soil)

Analyte	D 1	Reporting	Units	Batch	Date Prepared	Date Analyzed	Method	27.
Analyte	Result	Limit	Omis	Daten	Trepared	Anaryzeu	Withou	Notes
Catal Datualaum Uydwaaanhans h	w FID							
Total Petroleum Hydrocarbons b 230-C31	1.4	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
232-C33	1.4	1.0	mg/kg	AI D0011	U4/U4/UU	U4/12/00	LI A 6015III	
34-C35	1.1	1.0	,,	"	,,	"	"	
			"	,,	,,	,,	"	
36-C37	ND	1.0	,,	,,	"	"	"	
38-C39	ND ND	1.0 1.0	"		,,		"	
40, C41, C42, C43, C44	ND	1.0						
esticides/PCB by ECD								
crochlor 1016	ND	0.500	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
crochlor 1221	ND	0.500	"	"	"	"	"	
crochlor 1232	ND	0.500	"	"	"	"	"	
rochlor 1242	ND	0.500	"	"	"	"	"	
rochlor 1248	ND	0.500	"	"	"	"	"	
crochlor 1254	ND	0.500	"	"	"	"	"	
rochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		116 %	% Recover	y Limits	50-	150	"	
emiVolatile Organic Compound	ls by GC/MS							
I-Nitrosodimethylamine	ND	1.00	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
is(2-chloroethyl)ether	ND	1.00	"	"	"	"	"	
henol	ND	1.00	"	"	"	"	"	
-Chlorophenol	ND	1.00	"	"	"	"	"	
senzyl alcohol	ND	1.00	"	"	"	"	"	
,4-Dichlorobenzene	ND	1.00	"	"	"	"	"	
-Methylphenol	ND	1.00	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	1.00	"	"	"	"	"	
-Methylphenol	ND	1.00	"	"	"	"	"	
litrobenzene	ND	1.00	"	"	"	"	"	
sophorone	ND	1.00	"	"	"	"	"	
-Nitrophenol	ND	1.00	"	"	"	"	"	
,4-Dimethylphenol	ND	1.00	"	"	"	"	"	
sis(2-chloroethoxy)methane	ND	1.00	"	"	"	"	"	
enzoic acid	ND	3.00	"	"	"	"	"	
,4-Dichlorophenol	ND	1.00	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	1.00	"	"	"	"	"	
aphthalene	ND	1.00	"	"	"	"	"	
-Chloroaniline	ND	1.00	"	"	"	"	"	
lexachlorobutadiene	ND	1.00	"	"	"	"	"	
	1,10	1.00						

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 105 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-30 0603140-25 (Soil)

Analyte	R Result	eporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							EPA 8270C	
-Methylnaphthalene	ND	1.00	mg/kg	APD0069	04/10/06	04/13/06	EPA 82/0C	
exachlorocyclopentadiene	ND	1.00		"	"	"	"	
4,6-Trichlorophenol	ND	1.00	"	"	"	"	"	
4,5-Trichlorophenol	ND	1.00	"	"	"	"	"	
Chloronaphthalene	ND	1.00	"	"	"	"	"	
Nitroaniline	ND	1.00	"	"	"	"	"	
cenaphthylene	ND	1.00	"	"	"	"	"	
imethyl phthalate	ND	1.00	"	"	"	"	"	
6-Dinitrotoluene	ND	1.00	"	"	"	"	"	
cenaphthene	ND	1.00	"	"	"	"	"	
-Nitroaniline	ND	1.00	"	"	"	"	"	
4-Dinitrophenol	ND	1.00	"	"	"	"	"	
ibenzofuran	ND	1.00	"	"	"	"	"	
4-Dinitrotoluene	ND	1.00	"	"	"	"	"	
Nitrophenol	ND	1.00	"	"	"	"	"	
uorene	ND	1.00	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	1.00	"	"	"	"	"	
ethyl phthalate	ND	1.00	"	"	"	"	"	
Nitroaniline	ND	1.00	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	1.00	"	"	"	"	"	
-Nitrosodiphenylamine	ND	1.00	"	"	"	"	"	
Bromophenyl phenyl ether	ND	1.00	"	"	"	"	"	
exachlorobenzene	ND	1.00	"	"	"	"	"	
entachlorophenol	ND	1.00	"	"	"	"	"	
nenanthrene	ND	1.00	"	"	"	"	"	
nthracene	ND	1.00	"	"	"	"	"	
arbazole	ND	1.00	"	"	"	"	"	
i-n-butyl phthalate	ND	1.00	"	"	"	"	"	
uoranthene	ND	1.00	"	,,	"	"	"	
enzidine	ND ND	5.00	"	"	"	"	"	
vrene	ND ND	1.00	"	"	"	"	"	
ityl benzyl phthalate	ND ND	1.00	,,	"	"	"	"	
3'-Dichlorobenzidine			"	,,	,,		"	
	ND ND	1.00	"	,,	,,		"	
enzo (a) anthracene	ND	1.00	"	"	"	"	"	
nrysene	ND	1.00	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND	1.00	"	"	"	"	"	
-n-octyl phthalate	ND	1.00					"	
enzo (b) fluoranthene	ND	1.00	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 106 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-30 0603140-25 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compounds	by GC/MS							
Benzo (k) fluoranthene	ND	1.00	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Benzo (a) pyrene	ND	1.00	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	1.00	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	1.00	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1.00	"	"	"	"	"	
Surrogate: 2-Fluorophenol		%	% Recover	y Limits	10-	110	"	S-0
Surrogate: Phenol-d6		73.1 %	% Recover	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		86.8 %	% Recover	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		88.6 %	% Recover	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		91.6 %	% Recover	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		101 %	% Recover	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 107 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-35 0603140-26 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
TEX/TPHG by PID/FID								
enzene	ND	0.005	mg/kg	APC0156	03/31/06	04/06/06	EPA 8021B/8015m	
oluene	ND	0.005	"	"	"	"	"	
hylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010	"	"	"	"	"	
rrogate: Chlorobenzene		70.7 %	% Recovery	y Limits	70-	130	"	
IETALS BY 6000/7000 SERIES								
ntimony	3.7	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
rsenic	2.6	1.0	"	"	"	"	"	
arium	138	2.0	"	"	"	04/06/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	2.2	0.5	"	"	"	04/06/06	"	
hromium	56.3	1.0	"	"	"	04/06/06	"	
obalt	6.7	5.0	"	"	"	"	"	
opper	41.1	2.0	"	"	"	"	"	
ead	3.7	1.0	"	"	"	"	"	
ercury	0.080	0.010	"	APD0023	"	04/06/06	EPA 7471A	
olybdenum	4.6	1.0	"	APD0028	"	04/06/06	EPA 6010B	
ickel	37.5	1.0	"	"	"	04/06/06	"	
elenium	ND	2.0	"	"	"	"	"	
lver	ND	2.0	"	"	"	"	"	
nallium	ND	2.0	"	"	"	"	"	
anadium	54.0	2.0	"	"	"	04/06/06	"	
inc	97.3	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	1.0	1.0	"	"	"	"	"	
18-C19	1.3	1.0	"	"	"	"	"	
20-C21	1.8	1.0	"	"	"	"	"	
22-C23	1.6	1.0	"	"	"	"	"	
24-C25	2.0	1.0	"	"	"	"	"	
26-C27	3.2	1.0	"	"	"	"	"	
28-C29	4.4	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Some Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 108 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-35 0603140-26 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Total Petroleum Hydrocarbons	by FID							
C30-C31	5.0	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C32-C33	4.0	1.0		"	"	"	"	
C34-C35	2.8	1.0		"	"	"	"	
C36-C37	1.6	1.0		"	"	"	"	
C38-C39	1.4	1.0		"	"	"	"	
C40, C41, C42, C43, C44	1.4	1.0		"	"	"	"	
Pesticides/PCB by ECD	1,4	1.0						
arochlor 1016	ND	0.500	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
Arochlor 1221	ND ND	0.500	2 2	APD0049	04/10/00	U4/11/U0 "	"	
Arochlor 1232	ND	0.500		"	"	"	"	
Arochlor 1242	ND	0.500	"	"	"	"	"	
Arochlor 1248	ND	0.500	"	"	"	"	"	
Arochlor 1254	ND	0.500	"	"	"	"	"	
Arochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		110 %	% Recover	y Limits	50-	150	"	
SemiVolatile Organic Compound	ds by GC/MS							
I-Nitrosodimethylamine	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	0.100		"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
Benzyl alcohol	ND	0.100	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	0.100		"	"	"	"	
-Methylphenol	ND	0.100		"	"	"	"	
Vitrobenzene	ND	0.100		"	"	"	"	
sophorone	ND	0.100		"	"	"	"	
-Nitrophenol	ND	0.100		"	"	"	"	
,4-Dimethylphenol	ND	0.100		"	"	"		
Bis(2-chloroethoxy)methane	ND	0.100		"	"	"	"	
Benzoic acid	ND	0.300		"	"	"	"	
,4-Dichlorophenol	ND	0.100		"	"	"		
,2,4-Trichlorobenzene	ND	0.100		"	"	"		
Vaphthalene	ND	0.100		"	"	"	"	
-Chloroaniline	ND	0.100		"	"	"	"	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 109 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-35 0603140-26 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							TD 1 00 00 0	
-Chloro-3-methylphenol	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
-Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND ND	0.100		"	"	"	"	
arbazole	ND ND	0.100	,,	"	"	"	"	
i-n-butyl phthalate	ND ND	0.100	,,	"	"	"	"	
uoranthene			,,	,,	,,	,,	"	
uorantnene enzidine	ND ND	0.100 0.500	,,	,,	,,		"	
			"	,,	,,		"	
rene	ND	0.100	,,	"	"		"	
atyl benzyl phthalate	ND	0.100	"	"	"	"	,,	
3'-Dichlorobenzidine	ND	0.100					"	
enzo (a) anthracene	ND	0.100	"	"	"	"		
nrysene	ND	0.100	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"		
-n-octyl phthalate	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som some

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 110 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-35 0603140-26 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
						-		
emiVolatile Organic Compounds							EDA 9270C	
enzo (b) fluoranthene	ND	0.100	mg/kg "	APD0069	04/10/06	04/13/06	EPA 8270C	
enzo (k) fluoranthene	ND	0.100		"	"	"	"	
enzo (a) pyrene	ND	0.100	"	"	"	"	"	
ndeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	,,	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
enzo (g,h,i) perylene	ND	0.100						
urrogate: 2-Fluorophenol		56.8 %	% Recovery	Limits	10-1		"	
urrogate: Phenol-d6		59.9 %	% Recovery	Limits	10-1	10	"	
urrogate: Nitrobenzene-d5		62.9 %	% Recovery	Limits	10-1	10	"	
urrogate: 2-Fluorobiphenyl		64.7 %	% Recovery	Limits	10-1	10	"	
urrogate: 2,4,6-Tribromophenol		71.9 %	% Recovery	/ Limits	10-1	10	"	
urrogate: Terphenyl-dl4		74.9 %	% Recovery		10-1	10	"	
and the second second			70 10000001	Limits				
1ethod 8280								
,2,3,4,6,7,8-HpCDD	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
,2,3,4,6,7,8-HpCDF	ND	2.5	"	"	"	"	"	
,2,3,4,7,8,9-HpCDF	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,4,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,6,7,8-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,7,8,9-HxCDD	ND	2.5	"	"	"	"	"	
,2,3,7,8,9-HxCDF	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDD	ND	2.5	"	"	"	"	"	
,2,3,7,8-PeCDF	ND	2.5	"	"	"	"	"	
,3,4,6,7,8-HxCDF	ND	2.5	"	"	"	"	"	
,3,4,7,8-PeCDF	ND	2.5	"	"	"	"	"	
,3,7,8-TCDD	ND	1.0	"	"	"	"	"	
,3,7,8-TCDF	ND	1.0	"	"	"	"	"	
OCDD	ND	5.0	"	"	"	"	"	
OCDF	ND	5.0	"	"	"	"	"	
otal HpCDD	ND	2.5	"	"	"	"	"	
otal HpCDF	ND	2.5	"	"	"	"	"	
otal HxCDD	ND	2.5	"	"	"	"	"	
otal HxCDF	ND	2.5	"	"	"	"	"	
otal PeCDD	ND	2.5	**	"	"	"	**	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 111 of 144

CIWMB

Project: Disposal Gardens
Project Number: NA

P.O. Box 4025 / 1001 I Street Sacramento CA, 95812

Project Number: NA
Project Manager: Dawn Owen

Date Reported: 04/21/06 15:09

P2-35 0603140-26 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Method 8280								
Total PeCDF	ND	2.5	ug/Kg	[none]	04/10/06	04/13/06	Method 8280	
Total TCDD	ND	1.0	"	"	"	"	"	
Total TCDF	ND	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 112 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-40 0603140-27 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Benzene Benzene	ND	0.005	mg/kg	APC0156	03/31/06	04/06/06	EPA 8021B/8015m	
Coluene	ND ND	0.005	mg/kg	APC0156	03/31/00	04/06/06	"	
Ethylbenzene	ND	0.005	"	,,	"	"	"	
Kylenes (total)	ND	0.003	"	,,	"	"	"	
Surrogate: Chlorobenzene	110	66.6 %	% Recover	v Limits	70	130	"	S-Lo
METALS BY 6000/7000 SERIES			7011000701	, zmino				
Antimony	1.9	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
Arsenic	4.6	1.0	"	"	"	04/06/06	"	
Barium	131	2.0	"	"	"	04/06/06	"	
Beryllium	ND	0.3	"	"	"	"	"	
Cadmium	3.4	0.5	"	"	"	04/06/06	"	
Chromium	81.3	1.0	"	"	"	"	"	
Cobalt	6.4	5.0	"	"	"	"	"	
Copper	24.4	2.0	"	"	"	"	"	
Lead	1.3	1.0	"	"	"	04/06/06	"	
Mercury	0.072	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Molybdenum	3.1	1.0	"	APD0028	"	04/06/06	EPA 6010B	
Nickel	24.1	1.0	"	"	"	"	"	
Selenium	ND	2.0	"	"	"	"	"	
Silver	ND	2.0	"	"	"	04/06/06	"	
Thallium	ND	2.0	"	"	"	"	"	
Vanadium	79.6	2.0	"	"	"	"	"	
Zinc	94.7	2.0	"	"	"	"	"	
Total Petroleum Hydrocarbons by FID								
C7, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C10-C11	ND	1.0	"	"	"	"	"	
C12-C13	ND	1.0	"	"	"	"	"	
C14-C15	ND	1.0	"	"	"	"	"	
C16-C17	1.4	1.0	"	"	"	"	"	
C18-C19	2.0	1.0	"	"	"	"	"	
C20-C21	2.4	1.0	"	"	"	"	"	
C22-C23	1.8	1.0	"	"	"	"	"	
C24-C25	1.8	1.0	"	"	"	"	"	
C26-C27	ND	1.0	"	"	"	"	"	
C28-C29	1.1	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative

Page 113 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-40 0603140-27 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Fotal Petroleum Hydrocarbons b	w FID							
C30-C31	1.3	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C32-C33	1.3	1.0		"	"	"	"	
C34-C35	1.0	1.0		"	"	"	"	
C36-C37	ND	1.0		"	"	,,	"	
C38-C39	ND ND	1.0		"	"	"	"	
C40, C41, C42, C43, C44	ND	1.0		"	,,	"	"	
Pesticides/PCB by ECD	NB	1.0						
Arochlor 1016	ND	5.00	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
Arochlor 1221	ND	5.00	2 2	"	"	"	"	
Arochlor 1232	ND	5.00		"	"	"	"	
Arochlor 1242	ND	5.00		"	"	"	"	
Arochlor 1248	ND	5.00		"	"	"	"	
Arochlor 1254	ND	5.00	"	"	"	"	"	
Arochlor 1260	ND	5.00	"	"	"	"	"	
Surrogate: Decachlorobiphenyl		%	% Recover	y Limits	50-	150	"	S-0
SemiVolatile Organic Compound	ls by GC/MS							
N-Nitrosodimethylamine	ND	10.0	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Bis(2-chloroethyl)ether	ND	10.0		"	"	"	"	
Phenol	ND	10.0	"	"	"	"	"	
2-Chlorophenol	ND	10.0	"	"	"	"	"	
Benzyl alcohol	ND	10.0	"	"	"	"	"	
1,4-Dichlorobenzene	ND	10.0	"	"	"	"	"	
2-Methylphenol	ND	10.0	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	10.0	"	"	"	"	"	
4-Methylphenol	ND	10.0	"	"	"	"	"	
Nitrobenzene	ND	10.0	"	"	"	"	"	
sophorone	ND	10.0	"	"	"	"	"	
2-Nitrophenol	ND	10.0	"	"	"	"	"	
2,4-Dimethylphenol	ND	10.0	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	10.0		"	"	"	"	
Benzoic acid	ND	30.0		"	"	"	"	
2,4-Dichlorophenol	ND	10.0		"	"	"	"	
1,2,4-Trichlorobenzene	ND	10.0		"	"	"		
Naphthalene	ND	10.0		"	"	"	"	
1-Chloroaniline	ND	10.0		"	"	"		
Hexachlorobutadiene	ND	10.0		"	"	"	"	
4-Chloro-3-methylphenol	ND	10.0	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 114 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-40 0603140-27 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							EDA 0270C	
-Methylnaphthalene	ND	10.0		APD0069	04/10/06	04/13/06	EPA 8270C	
exachlorocyclopentadiene	ND	10.0		"	"	"	"	
4,6-Trichlorophenol	ND	10.0		"	"	"	"	
4,5-Trichlorophenol	ND	10.0		"	"	"	"	
Chloronaphthalene	ND	10.0		"	"	"	"	
Nitroaniline	ND	10.0		"	"	"	"	
cenaphthylene	ND	10.0	"	"	"	"	"	
imethyl phthalate	ND	10.0	"	"	"	"	"	
6-Dinitrotoluene	ND	10.0	"	"	"	"	"	
cenaphthene	ND	10.0	"	"	"	"	"	
Nitroaniline	ND	10.0	"	"	"	"	"	
4-Dinitrophenol	ND	10.0	"	"	"	"	"	
ibenzofuran	ND	10.0	"	"	"	"	"	
4-Dinitrotoluene	ND	10.0	"	"	"	"	"	
Nitrophenol	ND	10.0	"	"	"	"	"	
uorene	ND	10.0	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	10.0	"	"	"	"	"	
ethyl phthalate	ND	10.0	"	"	"	"	"	
Nitroaniline	ND	10.0	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	10.0		"	"	"	"	
-Nitrosodiphenylamine	ND	10.0	"	"	"	"	"	
Bromophenyl phenyl ether	ND	10.0	"	"	"	"	"	
exachlorobenzene	ND	10.0	"	"	"	"	"	
entachlorophenol	ND	10.0	"	"	"	"	"	
nenanthrene	ND	10.0		"	"	"	"	
nthracene	ND	10.0		"	"	"	"	
arbazole	ND	10.0		"	"	"	"	
-n-butyl phthalate	ND	10.0		"	"	"	"	
uoranthene	ND	10.0		,,	"	"	"	
enzidine	ND ND	50.0		,,	"	"	"	
rene	ND ND	10.0		"	"	"	"	
ityl benzyl phthalate	ND ND	10.0		"	"	"	"	
3'-Dichlorobenzidine		10.0		,,	,,		"	
	ND			,,	,,		"	
enzo (a) anthracene	ND	10.0		,,	"	"	"	
nrysene	ND	10.0		"	"	"	"	
s(2-ethylhexyl)phthalate	ND	10.0		"	"	"	"	
-n-octyl phthalate	ND	10.0						
enzo (b) fluoranthene	ND	10.0	"	"	"	"	"	

Excelchem Environmental Lab.

Du Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 115 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-40 0603140-27 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compoun	ds by GC/MS							
Benzo (k) fluoranthene	ND	10.0	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Benzo (a) pyrene	ND	10.0	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	10.0	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	10.0	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	10.0	"	"	"	"	"	
Surrogate: 2-Fluorophenol		%	% Recover	y Limits	10-	110	"	S
Surrogate: Phenol-d6		%	% Recover	y Limits	10-	110	"	S
Surrogate: Nitrobenzene-d5		%	% Recover	y Limits	10-	110	"	S
Surrogate: 2-Fluorobiphenyl		%	% Recover	y Limits	10-	110	"	S
Surrogate: 2,4,6-Tribromophenol		%	% Recover	y Limits	10-1	110	"	S
Surrogate: Terphenyl-dl4		%	% Recover	y Limits	10-	110	"	S

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 116 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-45 0603140-28 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
		·				·		
TEX/TPHG by PID/FID							ED 1 0021 D 1001 5	
enzene	ND	0.005	mg/kg "	APC0156	03/31/06	04/06/06	EPA 8021B/8015m	
oluene	ND	0.005	"		"	"	"	
thylbenzene	ND	0.005	"	"	"	"	"	
ylenes (total)	ND	0.010					"	
urrogate: Chlorobenzene		72.0 %	% Recover	y Limits	70-1	30	"	
IETALS BY 6000/7000 SERIES								
ntimony	2.4	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
rsenic	2.1	1.0	"	"	"	"	"	
arium	143	2.0	"	"	"	04/06/06	"	
eryllium	ND	0.3	"	"	"	"	"	
admium	2.0	0.5	"	"	"	04/06/06	"	
hromium	45.1	1.0	"	"	"	04/06/06	"	
obalt	5.7	5.0	"	"	"	"	"	
opper	22.8	2.0	"	"	"	"	"	
ead	ND	1.0	"	"	"	"	"	
lercury	0.075	0.010	"	APD0023	"	04/06/06	EPA 7471A	
lolybdenum	2.1	1.0	"	APD0028	"	04/06/06	EPA 6010B	
ickel	20.0	1.0	"	"	"	04/06/06	"	
elenium	ND	2.0	"	"	"	"	"	
ilver	ND	2.0	"	"	"	"	"	
hallium	ND	2.0	"	"	"	04/06/06	"	
anadium	43.0	2.0	"	"	"	"	"	
inc	105	2.0	"	"	"	"	"	
otal Petroleum Hydrocarbons by FID								
7, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
10-C11	ND	1.0	"	"	"	"	"	
12-C13	ND	1.0	"	"	"	"	"	
14-C15	ND	1.0	"	"	"	"	"	
16-C17	1.0	1.0	"	"	"	"	"	
18-C19	1.6	1.0	"	"	"	"	"	
20-C21	2.4	1.0	"	"	"	"	"	
22-C23	2.1	1.0	"	"	"	"	"	
24-C25	2.0	1.0	"	"	"	"	"	
26-C27	1.2	1.0	"	"	"	"	"	
28-C29	1.4	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Spe Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 117 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-45 0603140-28 (Soil)

Analyte	D 1	Reporting	Units	Batch	Date Prepared	Date Analyzed	Method	NI 4
Marye	Result	Limit	Cints	Butch	Trepared	7 that y z c u	Wethou	Notes
otal Petroleum Hydrocarbons l	by FID							
C30-C31	1.5	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C32-C33	1.4	1.0	"	"	"	"	"	
C34-C35	1.1	1.0	"	"	"	"	"	
236-C37	ND	1.0	"	"	"		"	
338-C39	ND	1.0	"	"	"	"	"	
C40, C41, C42, C43, C44	1.0	1.0	"	"	"	"	"	
Pesticides/PCB by ECD								
rochlor 1016	ND	0.500	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
crochlor 1221	ND	0.500	"	"	"	"	"	
Arochlor 1232	ND	0.500	"	"	"	"	"	
arochlor 1242	ND	0.500	"	"	"	"	"	
arochlor 1248	ND	0.500	"	"	"	"	"	
rochlor 1254	ND	0.500	"	"	"	"	"	
rochlor 1260	ND	0.500	"	"	"	"	"	
rrogate: Decachlorobiphenyl		113 %	% Recover	y Limits	50-1	150	"	
emiVolatile Organic Compound	ds by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
fitrobenzene	ND	0.100	"	"	"	"	"	
sophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
exachlorobutadiene	ND	0.100	"	"	"	"	"	
-Chloro-3-methylphenol	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 118 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-45 0603140-28 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							ED + 0250G	
-Methylnaphthalene	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"		
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
ethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND	0.100	"	"	"	"	"	
arbazole	ND	0.100	"	"	"	"	"	
i-n-butyl phthalate	ND	0.100		"	"	"	"	
uoranthene	ND	0.100		"	"	"	"	
enzidine	ND ND	0.100	,,	,,	"	,,	"	
vrene	ND ND	0.300	,,	"	"	"	"	
	ND ND	0.100	"	,,	,,		"	
atyl benzyl phthalate			"	"	,,		"	
3'-Dichlorobenzidine	ND	0.100	,,	"	"	"	"	
enzo (a) anthracene	ND	0.100	,,	"	"	"	,,	
nrysene	ND	0.100						
s(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"		
-n-octyl phthalate	ND	0.100	"	"	"	"	"	
enzo (b) fluoranthene	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

Som some

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 119 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-45 0603140-28 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compounds by	y GC/MS							
Benzo (k) fluoranthene	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		64.1 %	% Recovery	y Limits	10-	110	"	
Surrogate: Phenol-d6		65.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		70.1 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		68.3 %	% Recovery	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		77.8 %	% Recovery	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		81.4 %	% Recovery	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 120 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-50 0603140-29 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
BTEX/TPHG by PID/FID) TD	0.005					EPA 8021B/8015m	
Benzene Foluene	ND ND	0.005	mg/kg	APC0156	03/31/06	04/06/06	EFA 8021B/8013III	
	ND ND	0.005 0.005	"	"	"	"	"	
Ethylbenzene Kylenes (total)	ND ND	0.003	"	"	"	"	"	
Surrogate: Chlorobenzene	ND	60.6 %	% Recover		70		"	S-LO
METALS BY 6000/7000 SERIES		00.070	/6 Recover	y Lillius	, ,	150		5 20
Antimony	1.8	1.0	mg/kg	APD0028	04/04/06	04/06/06	EPA 6010B	
Arsenic	2.7	1.0	mg/kg	AFD0028	U4/U4/UU "	"	EFA 0010B	
Sarium	89.5	2.0	"	"	"	04/06/06	"	
		0.3	,,	"	"		"	
Beryllium C admium	ND 1.4	0.3	"	"	"	04/06/06	"	
Chromium	39.6	1.0	"	"	"	04/06/06	"	
Cobalt	5.7	5.0	,,	"	"	"	"	
Copper	12.2	2.0	,,	"	"	"	"	
ead	ND	1.0	"	,,	"	,,	"	
Mercury	0.049	0.010	"	APD0023	"	04/06/06	EPA 7471A	
Molybdenum	1.0	1.0	"	APD0028	"	04/06/06	EPA 6010B	
Vickel	17.9	1.0	"	"	"	"	"	
Selenium	ND	2.0	"	,,	"	"	"	
Silver	ND	2.0	"	"	"		"	
Challium	ND	2.0	"	,,	"	04/06/06	"	
/anadium	36.7	2.0	"	"	"	"	"	
Zine Zine Zine Zine Zine Zine Zine Zine	79.7	2.0	"	"	"	"	"	
Total Petroleum Hydrocarbons by FII)							
C7, C8, C9	ND	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
C10-C11	3.7	1.0	"	"	"	"	"	
C12-C13	14.9	1.0	"	"	"	"	"	
C14-C15	20.9	1.0	"	"	"	"	"	
C16-C17	48.6	1.0	"	"	"	"	"	
C18-C19	61.1	1.0	"	"	"	"	"	
C20-C21	70.3	1.0	"	"	"	"	"	
C22-C23	60.3	1.0	"	"	"	"	"	
C24-C25	55.8	1.0	"	"	"	"	"	
C26-C27	49.3	1.0	"	"	"	"	"	
C28-C29	37.2	1.0	"	"	"	"	"	

Excelchem Environmental Lab.

Som Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 121 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-50 0603140-29 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
	EID							
Total Petroleum Hydrocarbons l 230-C31	25.6	1.0	mg/kg	APD0011	04/04/06	04/12/06	EPA 8015m	
			mg/kg	APD0011	04/04/00	04/12/00	EPA 8013III	
C32-C33	11.6	1.0		,,	,,	,,	"	
C34-C35	8.4	1.0	"				"	
C36-C37	4.9	1.0	"	"	"	"	"	
38-C39	3.2	1.0	"	"	"	"	"	
40, C41, C42, C43, C44	1.7	1.0	"	"	"	"	"	
esticides/PCB by ECD								
rochlor 1016	ND	0.500	mg/kg	APD0049	04/10/06	04/11/06	PCBs BY EPA 8082	
crochlor 1221	ND	0.500	"	"	"	"	"	
arochlor 1232	ND	0.500	"	"	"	"	"	
arochlor 1242	ND	0.500	"	"	"	"	"	
rochlor 1248	ND	0.500	"	"	"	"	"	
rochlor 1254	ND	0.500	"	"	"	"	"	
rochlor 1260	ND	0.500	"	"	"	"	"	
urrogate: Decachlorobiphenyl		107 %	% Recover	y Limits	50-1	150	"	
emiVolatile Organic Compound	ds by GC/MS							
-Nitrosodimethylamine	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
is(2-chloroethyl)ether	ND	0.100	"	"	"	"	"	
henol	ND	0.100	"	"	"	"	"	
-Chlorophenol	ND	0.100	"	"	"	"	"	
enzyl alcohol	ND	0.100	"	"	"	"	"	
4-Dichlorobenzene	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
I-Nitrosodi-n-propylamine	ND	0.100	"	"	"	"	"	
-Methylphenol	ND	0.100	"	"	"	"	"	
itrobenzene	ND	0.100	"	"	"	"	"	
ophorone	ND	0.100	"	"	"	"	"	
-Nitrophenol	ND	0.100	"	"	"	"	"	
4-Dimethylphenol	ND	0.100	"	"	"	"	"	
is(2-chloroethoxy)methane	ND	0.100	"	"	"	"	"	
enzoic acid	ND	0.300	"	"	"	"	"	
4-Dichlorophenol	ND	0.100	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	
aphthalene	ND	0.100	"	"	"	"	"	
-Chloroaniline	ND	0.100	"	"	"	"	"	
		0.100	"		"	"	,,	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 122 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-50 0603140-29 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							TD 1 00 00 0	
-Chloro-3-methylphenol	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
-Methylnaphthalene	ND	0.100	"	"	"	"	"	
exachlorocyclopentadiene	ND	0.100	"	"	"	"	"	
4,6-Trichlorophenol	ND	0.100	"	"	"	"	"	
4,5-Trichlorophenol	ND	0.100	"	"	"	"	"	
Chloronaphthalene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
cenaphthylene	ND	0.100	"	"	"	"	"	
imethyl phthalate	ND	0.100	"	"	"	"	"	
6-Dinitrotoluene	ND	0.100	"	"	"	"	"	
cenaphthene	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
4-Dinitrophenol	ND	0.100	"	"	"	"	"	
ibenzofuran	ND	0.100	"	"	"	"	"	
4-Dinitrotoluene	ND	0.100	"	"	"	"	"	
Nitrophenol	ND	0.100	"	"	"	"	"	
uorene	ND	0.100	"	"	"	"	"	
Chlorophenyl phenyl ether	ND	0.100	"	"	"	"	"	
iethyl phthalate	ND	0.100	"	"	"	"	"	
Nitroaniline	ND	0.100	"	"	"	"	"	
6-Dinitro-2-methylphenol	ND	0.100	"	"	"	"	"	
-Nitrosodiphenylamine	ND	0.100	"	"	"	"	"	
Bromophenyl phenyl ether	ND	0.100	"	"	"	"	"	
exachlorobenzene	ND	0.100	"	"	"	"	"	
entachlorophenol	ND	0.100	"	"	"	"	"	
nenanthrene	ND	0.100	"	"	"	"	"	
nthracene	ND ND	0.100		"	"	"	"	
arbazole	ND ND	0.100	,,	"	"	"	"	
i-n-butyl phthalate	ND ND	0.100	,,	"	"	"	"	
uoranthene			,,	,,	,,	,,	"	
uorantnene enzidine	ND ND	0.100 0.500	,,	,,	,,		"	
			"	,,	,,		"	
rene	ND	0.100	,,	"	"		"	
atyl benzyl phthalate	ND	0.100	"	"	"	"	,,	
3'-Dichlorobenzidine	ND	0.100					"	
enzo (a) anthracene	ND	0.100	"	"	"	"		
nrysene	ND	0.100	"	"	"	"	"	
s(2-ethylhexyl)phthalate	ND	0.100	"	"	"	"		
-n-octyl phthalate	ND	0.100	"	"	"	"	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 123 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

P2-50 0603140-29 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compounds	by GC/MS							
Benzo (b) fluoranthene	ND	0.100	mg/kg	APD0069	04/10/06	04/13/06	EPA 8270C	
Benzo (k) fluoranthene	ND	0.100	"	"	"	"	"	
Benzo (a) pyrene	ND	0.100	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.100	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.100	"	"	"	"	"	
Surrogate: 2-Fluorophenol		63.5 %	% Recover	y Limits	10-	110	"	
Surrogate: Phenol-d6		65.9 %	% Recovery	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		70.1 %	% Recover	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		67.7 %	% Recover	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		79.6 %	% Recover	y Limits	10-	110	"	
Surrogate: Terphenyl-dl4		81.4 %	% Recover	y Limits	10-	110	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 124 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

BTEX/TPHG by PID/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch APC0155 - EPA 8021B/8015m										
Blank (APC0155-BLK1)				Prepared: 03/31/06 Analyzed: 04/03/06						
Surrogate: Chlorobenzene	11.3		ug/l	12.5		90.4	70-130			
Benzene	ND	0.005	mg/kg							
Toluene	ND	0.005	"							
Ethylbenzene	ND	0.005	"							
Xylenes (total)	ND	0.010	"							
LCS (APC0155-BS1)				Prepared: (03/31/06 Aı	nalyzed: 04	-/03/06			
Surrogate: Chlorobenzene	0.0462		mg/kg	0.0500		92.4	80-120			
Benzene	0.047	0.005	"	0.0500		94.0	80-120			
Toluene	0.046	0.005	"	0.0500		92.0	80-120			
Ethylbenzene	0.044	0.005	"	0.0500		88.0	80-120			
Xylenes (total)	0.134	0.010	"	0.150		89.3	80-120			
LCS Dup (APC0155-BSD1)				Prepared: (03/31/06 Aı	nalyzed: 04	/03/06			
Surrogate: Chlorobenzene	0.0484		mg/kg	0.0500		96.8	80-120			
Benzene	0.048	0.005	"	0.0500		96.0	80-120	2.11	20	
Toluene	0.048	0.005	"	0.0500		96.0	80-120	4.26	20	
Ethylbenzene	0.047	0.005	"	0.0500		94.0	80-120	6.59	20	
Xylenes (total)	0.142	0.010	"	0.150		94.7	80-120	5.80	20	
Matrix Spike (APC0155-MS1)	Sou	rce: 0603140-	01	Prepared: (03/31/06 A1	nalyzed: 04	-/05/06			
Surrogate: Chlorobenzene	0.0426		mg/kg	0.0500		85.2	80-120			
Benzene	0.045	0.005	"	0.0500	ND	90.0	80-120			
Toluene	0.046	0.005	"	0.0500	ND	92.0	80-120			
Ethylbenzene	0.045	0.005	"	0.0500	ND	90.0	80-120			
Xylenes (total)	0.134	0.010	"	0.150	0.003	87.3	80-120			
Matrix Spike Dup (APC0155-MSD1)	Sou	rce: 0603140-	01	Prepared: (03/31/06 Aı	nalyzed: 04	/05/06			
Surrogate: Chlorobenzene	0.0453		mg/kg	0.0500		90.6	80-120			
Benzene	0.047	0.005	"	0.0500	ND	94.0	80-120	4.35	20	
Toluene	0.048	0.005	"	0.0500	ND	96.0	80-120	4.26	20	
Ethylbenzene	0.048	0.005	"	0.0500	ND	96.0	80-120	6.45	20	
Xylenes (total)	0.143	0.010	"	0.150	0.003	93.3	80-120	6.50	20	

Excelchem Environmental Lab.

De Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 125 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

BTEX/TPHG by PID/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch APC0156 - EPA 8021B/8015m										
Blank (APC0156-BLK1)				Prepared: 0	03/31/06 A	nalyzed: 04	1/04/06			
Surrogate: Chlorobenzene	10.9		ug/l	12.5		87.2	70-130			
Benzene	ND	0.005	mg/kg							
Γoluene	ND	0.005	"							
Ethylbenzene	ND	0.005	"							
Xylenes (total)	ND	0.010	"							
LCS (APC0156-BS1)				Prepared: 0	03/31/06 A	nalyzed: 04	1/04/06			
Surrogate: Chlorobenzene	0.0477		mg/kg	0.0500		95.4	80-120			
Benzene	0.048	0.005	"	0.0500		96.0	80-120			
Toluene	0.049	0.005	"	0.0500		98.0	80-120			
Ethylbenzene	0.047	0.005	"	0.0500		94.0	80-120			
Xylenes (total)	0.142	0.010	"	0.150		94.7	80-120			
LCS Dup (APC0156-BSD1)	Prepared: 03/31/06 Analyzed: 04/04/06									
Surrogate: Chlorobenzene	0.0478		mg/kg	0.0500		95.6	80-120			
Benzene	0.049	0.005	"	0.0500		98.0	80-120	2.06	20	
Гoluene	0.049	0.005	"	0.0500		98.0	80-120	0.00	20	
Ethylbenzene	0.047	0.005	"	0.0500		94.0	80-120	0.00	20	
Xylenes (total)	0.143	0.010	"	0.150		95.3	80-120	0.702	20	
Matrix Spike (APC0156-MS1)	Sou	rce: 0603140-	21	Prepared: 03/31/06 Analyzed: 04/06/06						
Surrogate: Chlorobenzene	0.0433		mg/kg	0.0500		86.6	80-120			
Benzene	0.046	0.005	"	0.0500	ND	92.0	80-120			
Γoluene	0.045	0.005	"	0.0500	ND	90.0	80-120			
Ethylbenzene	0.044	0.005	"	0.0500	0.002	84.0	80-120			
Xylenes (total)	0.132	0.010	"	0.150	0.004	85.3	80-120			
Matrix Spike Dup (APC0156-MSD1)	Sou	rce: 0603140-	21	Prepared: 0	03/31/06 A	nalyzed: 04	1/06/06			
Surrogate: Chlorobenzene	0.0449		mg/kg	0.0500		89.8	80-120			
Benzene	0.048	0.005	"	0.0500	ND	96.0	80-120	4.26	20	
Γoluene	0.048	0.005	"	0.0500	ND	96.0	80-120	6.45	20	
Ethylbenzene	0.046	0.005	"	0.0500	0.002	88.0	80-120	4.44	20	
Xylenes (total)	0.139	0.010	"	0.150	0.004	90.0	80-120	5.17	20	

Excelchem Environmental Lab.

Some Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 126 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch APD0023 - EPA 7471A										
Blank (APD0023-BLK1)				Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	ND	0.010	mg/kg							
Blank (APD0023-BLK2)				Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	ND	0.010	mg/kg							
LCS (APD0023-BS1)				Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	0.368	0.010	mg/kg	0.400		92.0	80-120			
LCS (APD0023-BS2)				Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	0.349	0.010	mg/kg	0.400		87.2	80-120			
LCS Dup (APD0023-BSD1)				Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	0.368	0.010	mg/kg	0.400		92.0	80-120	0.00	20	
LCS Dup (APD0023-BSD2)				Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	0.346	0.010	mg/kg	0.400		86.5	80-120	0.863	20	
Matrix Spike (APD0023-MS1)	Sou	rce: 0603140-	01	Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	0.403	0.010	mg/kg	0.400	0.027	94.0	75-125			
Matrix Spike (APD0023-MS2)	Sou	rce: 0603140-	21	Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	0.394	0.010	mg/kg	0.400	0.046	87.0	75-125			
Matrix Spike Dup (APD0023-MSD1)	Sou	rce: 0603140-	01	Prepared: (04/04/06 A	nalyzed: 04	1/06/06			
Mercury	0.402	0.010	mg/kg	0.400	0.027	93.8	75-125	0.248	20	
Matrix Spike Dup (APD0023-MSD2)	Source: 0603140-21 F		Prepared: 04/04/06 Analyzed: 04/06/06							
Mercury	0.384	0.010	mg/kg	0.400	0.046	84.5	75-125	2.57	20	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 127 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-										

Ratch	A DT	10028	FDA	6010B

Blank (APD0028-BLK1)				Prepared: 04/04/06 Analyzed: 04/05/06
Antimony	ND	1.0	mg/kg	
Arsenic	ND	1.0	"	
Barium	ND	2.0	"	
Beryllium	ND	0.3	"	
Cadmium	ND	0.5	"	
Chromium	ND	1.0	"	
Cobalt	ND	5.0	"	
Copper	ND	2.0	"	
Lead	ND	1.0	"	
Molybdenum	ND	1.0	"	
Nickel	ND	1.0	"	
Selenium	ND	2.0	"	
Silver	ND	2.0	"	
Thallium	ND	2.0	"	
Vanadium	ND	2.0	"	
Zinc	ND	2.0	"	
Blank (APD0028-BLK2)				Prepared: 04/04/06 Analyzed: 04/06/06
Antimony	ND	1.0	mg/kg	
Arsenic	ND	1.0	"	
Barium	ND	2.0	"	
Beryllium	ND	0.3	"	
Cadmium	ND	0.5	"	
Chromium	ND	1.0	"	
Cobalt	ND	5.0	"	
Copper	ND	2.0	"	
Lead	ND	1.0	"	
Molybdenum	ND	1.0	"	
Nickel	ND	1.0	"	
Selenium	ND	2.0	"	
Silver	ND	2.0	"	
Thallium	ND	2.0	"	
Vanadium	ND	2.0	"	

Excelchem Environmental Lab.

Du Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 128 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Batch	APD0028	- EPA	6010B
-------	---------	-------	-------

LCS (APD0028-BS1)			Prepared: 04/04	4/06 Analyzed: 04	/05/06
Antimony 93.9	1.0	mg/kg	100	93.9	80-120
Arsenic 106	1.0	"	100	106	80-120
Barium 93.3	2.0	"	100	93.3	80-120
Beryllium 93.4	0.3	"	100	93.4	80-120
Cadmium 106	0.5	"	100	106	80-120
Chromium 96.8	1.0	"	100	96.8	80-120
Cobalt 96.9	5.0	"	100	96.9	80-120
Copper 121	2.0	"	100	121	80-120
Lead 98.1	1.0	"	100	98.1	80-120
Molybdenum 101	1.0	"	100	101	80-120
Nickel 99.8	1.0	"	100	99.8	80-120
Selenium 101	2.0	"	100	101	80-120
Silver 89.7	2.0	"	100	89.7	80-120
Thallium 101	2.0	"	100	101	80-120
Vanadium 96.9	2.0	"	100	96.9	80-120
Zinc 105	2.0	"	100	105	80-120
LCS (APD0028-BS2)			Prepared: 04/04	4/06 Analyzed: 04	/06/06
	1.0	mg/kg	Prepared: 04/04	4/06 Analyzed: 04	/06/06 80-120
Antimony 101	1.0 1.0	mg/kg	•		
Antimony 101 Arsenic 104			100	101	80-120
Antimony 101 Arsenic 104 Barium 102	1.0	"	100 100	101 104	80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6	1.0 2.0	"	100 100 100	101 104 102	80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102	1.0 2.0 0.3	"	100 100 100 100	101 104 102 93.6	80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6	1.0 2.0 0.3 0.5	" "	100 100 100 100 100	101 104 102 93.6 102	80-120 80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2	1.0 2.0 0.3 0.5 1.0	" "	100 100 100 100 100 100	101 104 102 93.6 102 95.6	80-120 80-120 80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2 Copper 101	1.0 2.0 0.3 0.5 1.0 5.0	" " " " " " " " " " " " " " " " " " " "	100 100 100 100 100 100 100	101 104 102 93.6 102 95.6 97.2	80-120 80-120 80-120 80-120 80-120 80-120 80-120
Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2 Copper 101	1.0 2.0 0.3 0.5 1.0 5.0 2.0	" " " " " " " " " " " " " " " " " " " "	100 100 100 100 100 100 100	101 104 102 93.6 102 95.6 97.2	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2 Copper 101 Lead 97.3	1.0 2.0 0.3 0.5 1.0 5.0 2.0	" " " " " " " " " " " " " " " " " " " "	100 100 100 100 100 100 100 100	101 104 102 93.6 102 95.6 97.2 101 97.3	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2 Copper 101 Lead 97.3 Molybdenum 99.1 Nickel 99.3	1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0	" " " " " " " " " " " " " " " " " " " "	100 100 100 100 100 100 100 100 100	101 104 102 93.6 102 95.6 97.2 101 97.3	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2 Copper 101 Lead 97.3 Molybdenum 99.1 Nickel 99.3 Selenium 96.6	1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0		100 100 100 100 100 100 100 100 100	101 104 102 93.6 102 95.6 97.2 101 97.3 99.1	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2 Copper 101 Lead 97.3 Molybdenum 99.1 Nickel 99.3 Selenium 96.6 Silver 93.4	1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0 1.0 2.0		100 100 100 100 100 100 100 100 100 100	101 104 102 93.6 102 95.6 97.2 101 97.3 99.1 99.3 96.6	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
Antimony 101 Arsenic 104 Barium 102 Beryllium 93.6 Cadmium 102 Chromium 95.6 Cobalt 97.2 Copper 101 Lead 97.3 Molybdenum 99.1 Nickel 99.3 Selenium 96.6 Silver 93.4	1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0 1.0 2.0 2.0		100 100 100 100 100 100 100 100 100 100	101 104 102 93.6 102 95.6 97.2 101 97.3 99.1 99.3 96.6	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120

Excelchem Environmental Lab.

De Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 129 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch APD0028 - EPA 6010B											
LCS Dup (APD0028-BSD1)		Prepared: 04/04/06 Analyzed: 04/05/06									
Antimony	95.7	1.0	mg/kg	100		95.7	80-120	1.90	25		
Arsenic	103	1.0	"	100		103	80-120	2.87	25		
Barium	92.8	2.0	"	100		92.8	80-120	0.537	25		
Beryllium	92.0	0.3	"	100		92.0	80-120	1.51	25		
Cadmium	101	0.5	"	100		101	80-120	4.83	25		
Chromium	94.2	1.0	"	100		94.2	80-120	2.72	25		
Cobalt	95.4	5.0	"	100		95.4	80-120	1.56	25		
Copper	114	2.0	"	100		114	80-120	5.96	25		
Lead	95.2	1.0	"	100		95.2	80-120	3.00	25		
Molybdenum	98.5	1.0	"	100		98.5	80-120	2.51	25		
Nickel	100	1.0	"	100		100	80-120	0.200	25		
Selenium	98.7	2.0	"	100		98.7	80-120	2.30	25		
Silver	86.1	2.0	"	100		86.1	80-120	4.10	25		
Thallium	97.0	2.0	"	100		97.0	80-120	4.04	25		
Vanadium	94.9	2.0	"	100		94.9	80-120	2.09	25		
Zinc	103	2.0	"	100		103	80-120	1.92	25		
LCS Dup (APD0028-BSD2)				Prepared: (04/04/06 Aı	nalyzed: 04	/06/06				
Antimony	102	1.0	mg/kg	100		102	80-120	0.985	25		
Arsenic	104	1.0	"	100		104	80-120	0.00	25		
Barium	97.1	2.0	"	100		97.1	80-120	4.92	25		
Beryllium	92.6	0.3	"	100		92.6	80-120	1.07	25		
Cadmium	103	0.5	"	100		103	80-120	0.976	25		
Chromium	94.0	1.0	"	100		94.0	80-120	1.69	25		
Cobalt	96.1	5.0	"	100		96.1	80-120	1.14	25		
Copper	119	2.0	"	100		119	80-120	16.4	25		
Lead	97.1	1.0	"	100		97.1	80-120	0.206	25		
Molybdenum	99.2	1.0	"	100		99.2	80-120	0.101	25		
Nickel	99.1	1.0	"	100		99.1	80-120	0.202	25		
Selenium	98.4	2.0	"	100		98.4	80-120	1.85	25		
Silver	86.1	2.0	"	100		86.1	80-120	8.13	25		
Thallium	97.9	2.0	"	100		97.9	80-120	1.52	25		
Vanadium	92.2	2.0	"	100		92.2	80-120	3.62	25		
Zinc	102	2.0	"	100		102	80-120	2.90	25		

Excelchem Environmental Lab.

Du Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 130 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

METALS BY 6000/7000 SERIES - Quality Control

					_					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Batch APD0028 - EPA 6010B

Matrix Spike (APD0028-MS1)	Source	e: 0603140-	01	Prepared: (04/04/06 A	nalyzed: 04	1/05/06	
Antimony	97.8	1.0	mg/kg	100	3.5	94.3	75-125	
Arsenic	108	1.0	"	100	2.5	106	75-125	
Barium	233	2.0	"	100	223	10.0	75-125	QM-07
Beryllium	92.1	0.3	"	100	ND	92.1	75-125	
Cadmium	100	0.5	"	100	0.9	99.1	75-125	
Chromium	125	1.0	"	100	36.1	88.9	75-125	
Cobalt	103	5.0	"	100	6.8	96.2	75-125	
Copper	125	2.0	"	100	20.3	105	75-125	
Lead	96.3	1.0	"	100	3.7	92.6	75-125	
Molybdenum	97.9	1.0	"	100	1.1	96.8	75-125	
Nickel	110	1.0	"	100	15.4	94.6	75-125	
Selenium	103	2.0	"	100	ND	103	75-125	
Silver	93.9	2.0	"	100	ND	93.9	75-125	
Thallium	92.1	2.0	"	100	ND	92.1	75-125	
Vanadium	121	2.0	"	100	32.4	88.6	75-125	
Zinc	162	2.0	"	100	69.6	92.4	75-125	
Matrix Spike (APD0028-MS2)	Source	e: 0603140-	21	Prepared: (04/04/06 A	nalyzed: 04	1/06/06	
Matrix Spike (APD0028-MS2) Antimony	Source 96.3	2: 0603140 -2	21 mg/kg	Prepared: (04/04/06 A 3.8	nalyzed: 04 92.5	1/06/06 75-125	
Antimony	96.3	1.0	mg/kg	100	3.8	92.5	75-125	QM-07
Antimony Arsenic	96.3 107	1.0 1.0	mg/kg	100 100	3.8 3.4	92.5 104	75-125 75-125	QM-07
Antimony Arsenic Barium	96.3 107 243	1.0 1.0 2.0	mg/kg	100 100 100	3.8 3.4 61.5	92.5 104 182	75-125 75-125 75-125	QM-07
Antimony Arsenic Barium Beryllium	96.3 107 243 87.2	1.0 1.0 2.0 0.3	mg/kg " "	100 100 100 100	3.8 3.4 61.5 ND	92.5 104 182 87.2	75-125 75-125 75-125 75-125	QM-07
Antimony Arsenic Barium Beryllium Cadmium	96.3 107 243 87.2 95.8	1.0 1.0 2.0 0.3 0.5	mg/kg " " "	100 100 100 100 100	3.8 3.4 61.5 ND 1.0	92.5 104 182 87.2 94.8	75-125 75-125 75-125 75-125 75-125	QM-07
Antimony Arsenic Barium Beryllium Cadmium Chromium	96.3 107 243 87.2 95.8 156	1.0 1.0 2.0 0.3 0.5 1.0	mg/kg " " " "	100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9	92.5 104 182 87.2 94.8 109	75-125 75-125 75-125 75-125 75-125 75-125	QM-07 QM-07
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	96.3 107 243 87.2 95.8 156 100	1.0 1.0 2.0 0.3 0.5 1.0 5.0	mg/kg " " " "	100 100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9 6.9	92.5 104 182 87.2 94.8 109 93.1	75-125 75-125 75-125 75-125 75-125 75-125 75-125	·
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	96.3 107 243 87.2 95.8 156 100	1.0 1.0 2.0 0.3 0.5 1.0 5.0	mg/kg	100 100 100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9 6.9 33.8	92.5 104 182 87.2 94.8 109 93.1 133	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	96.3 107 243 87.2 95.8 156 100 167 97.2	1.0 1.0 2.0 0.3 0.5 1.0 5.0 2.0	mg/kg	100 100 100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9 6.9 33.8 2.9	92.5 104 182 87.2 94.8 109 93.1 133 94.3	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	·
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	96.3 107 243 87.2 95.8 156 100 167 97.2	1.0 1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0	mg/kg	100 100 100 100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9 6.9 33.8 2.9 4.1	92.5 104 182 87.2 94.8 109 93.1 133 94.3	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	·
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	96.3 107 243 87.2 95.8 156 100 167 97.2 101	1.0 1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0	mg/kg	100 100 100 100 100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9 6.9 33.8 2.9 4.1 22.6	92.5 104 182 87.2 94.8 109 93.1 133 94.3 96.9 125	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	·
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	96.3 107 243 87.2 95.8 156 100 167 97.2 101 148	1.0 1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0 1.0 2.0	mg/kg	100 100 100 100 100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9 6.9 33.8 2.9 4.1 22.6 ND	92.5 104 182 87.2 94.8 109 93.1 133 94.3 96.9 125 96.2	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver	96.3 107 243 87.2 95.8 156 100 167 97.2 101 148 96.2 88.5	1.0 1.0 2.0 0.3 0.5 1.0 5.0 2.0 1.0 1.0 2.0 2.0	mg/kg	100 100 100 100 100 100 100 100 100 100	3.8 3.4 61.5 ND 1.0 46.9 6.9 33.8 2.9 4.1 22.6 ND 0.1	92.5 104 182 87.2 94.8 109 93.1 133 94.3 96.9 125 96.2 88.4	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	

Excelchem Environmental Lab.

John Down

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 131 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch APD0028 - EPA 6010B										
Matrix Spike Dup (APD0028-MSD1)				Prepared: (04/04/06 A					
Antimony	97.3	1.0	mg/kg	100	3.5	93.8	75-125	0.513	25	
Arsenic	107	1.0	"	100	2.5	104	75-125	0.930	25	
Barium	241	2.0	"	100	223	18.0	75-125	3.38	25	QM-07
Beryllium	90.2	0.3	"	100	ND	90.2	75-125	2.08	25	
Cadmium	98.8	0.5	"	100	0.9	97.9	75-125	1.21	25	
Chromium	121	1.0	"	100	36.1	84.9	75-125	3.25	25	
Cobalt	101	5.0	"	100	6.8	94.2	75-125	1.96	25	
Copper	151	2.0	"	100	20.3	131	75-125	18.8	25	QM-07
Lead	95.7	1.0	"	100	3.7	92.0	75-125	0.625	25	
Molybdenum	97.5	1.0	"	100	1.1	96.4	75-125	0.409	25	
Nickel	109	1.0	"	100	15.4	93.6	75-125	0.913	25	
Selenium	103	2.0	"	100	ND	103	75-125	0.00	25	
Silver	91.1	2.0	"	100	ND	91.1	75-125	3.03	25	
Thallium	90.9	2.0	"	100	ND	90.9	75-125	1.31	25	
Vanadium	120	2.0	"	100	32.4	87.6	75-125	0.830	25	
Zine	170	2.0	"	100	69.6	100	75-125	4.82	25	
Matrix Spike Dup (APD0028-MSD2)	Sou	rce: 0603140-2	1	Prepared: (04/04/06 A	nalyzed: 04	-/06/06			
Antimony	84.9	1.0	mg/kg	100	3.8	81.1	75-125	12.6	25	
Arsenic	105	1.0	"	100	3.4	102	75-125	1.89	25	
Barium	245	2.0	"	100	61.5	184	75-125	0.820	25	QM-07
Beryllium	83.8	0.3	"	100	ND	83.8	75-125	3.98	25	
Cadmium	93.9	0.5	"	100	1.0	92.9	75-125	2.00	25	
Chromium	155	1.0	"	100	46.9	108	75-125	0.643	25	
Cobalt	95.7	5.0	"	100	6.9	88.8	75-125	4.39	25	
Copper	149	2.0	"	100	33.8	115	75-125	11.4	25	
Lead	91.7	1.0	"	100	2.9	88.8	75-125	5.82	25	
Molybdenum	97.5	1.0	"	100	4.1	93.4	75-125	3.53	25	
Nickel	151	1.0	"	100	22.6	128	75-125	2.01	25	QM-07
Selenium	79.9	2.0	"	100	ND	79.9	75-125	18.5	25	
Silver	85.0	2.0	"	100	0.1	84.9	75-125	4.03	25	
Thallium	82.9	2.0	"	100	ND	82.9	75-125	1.91	25	
Vanadium	152	2.0	"	100	43.3	109	75-125	0.00	25	
Zinc	197	2.0	,,	100	72.1	125	75-125	3.98	25	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 132 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

Total Petroleum Hydrocarbons by FID - Quality Control

				a "			WREG		222	
Amalysta	Dagult	Reporting	Linita	Spike	Source	0/DEC	%REC	DDD	RPD	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	notes

Batch APD0008 - EPA 8015m

Blank (APD0008-BLK1)				Prepared: 04/03/06 Analyzed: 04/11/06
C7, C8, C9	ND	1.0	mg/kg	
0-C11	ND	1.0	"	
12-C13	ND	1.0	"	
4-C15	ND	1.0	"	
16-C17	ND	1.0	"	
18-C19	ND	1.0	"	
20-C21	ND	1.0	"	
22-C23	ND	1.0	"	
24-C25	ND	1.0	"	
26-C27	ND	1.0	"	
28-C29	ND	1.0	"	
30-C31	ND	1.0	"	
32-C33	ND	1.0	"	
234-C35	ND	1.0	"	
C36-C37	ND	1.0	"	
38-C39	ND	1.0	"	
40, C41, C42, C43, C44	ND	1.0	"	

Batch APD0011 - EPA 8015m

nk (APD0011-BLK1)				Prepared: 04/04/06 Analyzed: 04/12/06
C8, C9	ND	1.0	mg/kg	
0-C11	ND	1.0	"	
2-C13	ND	1.0	"	
I-C15	ND	1.0	"	
5-C17	ND	1.0	"	
I-C19	ND	1.0	"	
-C21	ND	1.0	"	
·C23	ND	1.0	"	
-C25	ND	1.0	"	
C27	ND	1.0	"	
C29	ND	1.0	"	
C31	ND	1.0	"	
-C33	ND	1.0	"	
-C35	ND	1.0	"	
-C37	ND	1.0	"	
C39	ND	1.0	"	
C41, C42, C43, C44	ND	1.0	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 133 of 144

CIWMB Project: Disposal Gardens P.O. Box 4025 / 1001 I Street NA Project Number:

Date Reported: Sacramento CA, 95812 Dawn Owen 04/21/06 15:09 Project Manager:

Pesticides/PCB by ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Batch APD0044 - PCBs BY EPA 8082

Blank (APD0044-BLK1)		Prepared & Analyzed: 04/10/06								
Surrogate: Decachlorobiphenyl	0.0197		mg/kg	0.0200	98.5	50-150				
Arochlor 1016	ND	0.0500	"							
Arochlor 1221	ND	0.0500	"							
Arochlor 1232	ND	0.0500	"							
Arochlor 1242	ND	0.0500	"							
Arochlor 1248	ND	0.0500	"							
Arochlor 1254	ND	0.0500	"							
Arochlor 1260	ND	0.0500	"							

Prepared & Analyzed: 04/10/06 LCS (APD0044-BS1)

Surrogate: Decachlorobiphenyl	0.0185	mg/kg	0.0200	92.5	50-150
Arochlor 1260	0.902	0.0500 "	1.00	90.2	50-150

LCS Dun (APD0044-RSD1)

LCS Dup (APD0044-BSD1)				Prepared & Ana	lyzed: 04/10/06				
Surrogate: Decachlorobiphenyl	0.0186		mg/kg	0.0200	93.0	50-150			
Arochlor 1260	0.908	0.0500	"	1.00	90.8	50-150	0.663	50	

Matrix Spike (APD0044-MS1)	Sourc	e: 0603140-17	Prepared &	Analyzed: 04/	/10/06		
Surrogate: Decachlorobiphenyl	0.0184	mg/kg	0.0200		92.0	50-150	_
Arochlor 1260	0.912	0.0500 "	1.00	ND	91.2	50-150	_

Matrix Spike Dup (APD0044-MSD1)	Sourc	e: 0603140-1	17	Prepared &	Analyzed:	04/10/06				
Surrogate: Decachlorobiphenyl	0.0194		mg/kg	0.0200		97.0	50-150			
Arochlor 1260	0.948	0.0500	"	1.00	ND	94.8	50-150	3.87	50	

Batch APD0049 - PCBs BY EPA 8082

Blank (APD0049-BLK1)				Prepared: 04/10/0	06 Analyzed: 04	4/11/06	
Surrogate: Decachlorobiphenyl	0.0166		mg/kg	0.0200	83.0	50-150	
Arochlor 1016	ND	0.0500	"				
Arochlor 1221	ND	0.0500	"				
Arochlor 1232	ND	0.0500	"				
Arochlor 1242	ND	0.0500	"				
Arochlor 1248	ND	0.0500	"				
Arochlor 1254	ND	0.0500	"				
Arochlor 1260	ND	0.0500	"				

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 134 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

Pesticides/PCB by ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch APD0049 - PCBs BY EPA 8082										
LCS (APD0049-BS1)				Prepared: (04/10/06 A	nalyzed: 04	1/11/06			
Surrogate: Decachlorobiphenyl	0.0189	·	mg/kg	0.0200		94.5	50-150	·		
Arochlor 1260	0.843	0.0500	"	1.00		84.3	50-150			
LCS Dup (APD0049-BSD1)				Prepared: (04/10/06 A	nalyzed: 04	1/11/06			
Surrogate: Decachlorobiphenyl	0.0177		mg/kg	0.0200	·	88.5	50-150			
Arochlor 1260	0.859	0.0500	"	1.00		85.9	50-150	1.88	50	
Matrix Spike (APD0049-MS1)	Sou	rce: 0603140-	25	Prepared: (04/10/06 A	nalyzed: 04	1/11/06			
Surrogate: Decachlorobiphenyl	0.0182	·	mg/kg	0.0200	·	91.0	50-150	·	·	·
Arochlor 1260	0.904	0.500	"	1.00	ND	90.4	50-150			
Matrix Spike Dup (APD0049-MSD1)	Sou	rce: 0603140-	25	Prepared: (04/10/06 A	nalyzed: 04	1/11/06			
Surrogate: Decachlorobiphenyl	0.0218	<u> </u>	mg/kg	0.0200	<u> </u>	109	50-150	<u></u>	<u> </u>	<u></u>
Arochlor 1260	1.07	0.500	"	1.00	ND	107	50-150	16.8	50	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 135 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

SemiVolatile Organic Compounds by GC/MS - Quality Control

			Reporting		Spike	Source Result		%REC		RPD Limit	
1	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch APD0054 - EPA 8270C

Blank (APD0054-BLK1)			Prepared: 04/10/	06 Analyzed: 04	11/06	
Surrogate: 2-Fluorophenol	1.19	mg/kg	1.67	71.3	10-110	
Surrogate: Phenol-d6	1.25	"	1.67	74.9	10-110	
Surrogate: Nitrobenzene-d5	1.32	"	1.67	79.0	10-110	
Surrogate: 2-Fluorobiphenyl	1.35	"	1.67	80.8	10-110	
Surrogate: 2,4,6-Tribromophenol	1.37	"	1.67	82.0	10-110	
Surrogate: Terphenyl-dl4	1.55	"	1.67	92.8	10-110	
N-Nitrosodimethylamine	ND	0.100 "				
Bis(2-chloroethyl)ether	ND	0.100 "				
Phenol	ND	0.100 "				
2-Chlorophenol	ND	0.100 "				
Benzyl alcohol	ND	0.100 "				
1,4-Dichlorobenzene	ND	0.100 "				
2-Methylphenol	ND	0.100 "				
N-Nitrosodi-n-propylamine	ND	0.100 "				
4-Methylphenol	ND	0.100 "				
Nitrobenzene	ND	0.100 "				
sophorone	ND	0.100 "				
2-Nitrophenol	ND	0.100 "				
2,4-Dimethylphenol	ND	0.100 "				
Bis(2-chloroethoxy)methane	ND	0.100 "				
Benzoic acid	ND	0.300 "				
2,4-Dichlorophenol	ND	0.100 "				
,2,4-Trichlorobenzene	ND	0.100 "				
Naphthalene	ND	0.100 "				
1-Chloroaniline	ND	0.100 "				
Hexachlorobutadiene	ND	0.100 "				
4-Chloro-3-methylphenol	ND	0.100 "				
2-Methylnaphthalene	ND	0.100 "				
Hexachlorocyclopentadiene	ND	0.100 "				
2,4,6-Trichlorophenol	ND	0.100 "				
2,4,5-Trichlorophenol	ND	0.100 "				
2-Chloronaphthalene	ND	0.100 "				
2-Nitroaniline	ND	0.100 "				
Acenaphthylene	ND	0.100 "				
Dimethyl phthalate	ND	0.100 "				
2,6-Dinitrotoluene	ND	0.100 "				
Acenaphthene	ND	0.100 "				
3-Nitroaniline	ND	0.100 "				
2,4-Dinitrophenol	ND	0.100 "				

Excelchem Environmental Lab.

Du Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 136 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

SemiVolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch APD0054 - EPA 8270C

Blank (APD0054-BLK1)				Prepared: 04/10/06 Analyzed: 04/11/06
Dibenzofuran	ND	0.100	mg/kg	
2,4-Dinitrotoluene	ND	0.100	"	
4-Nitrophenol	ND	0.100	"	
Fluorene	ND	0.100	"	
4-Chlorophenyl phenyl ether	ND	0.100	"	
Diethyl phthalate	ND	0.100	"	
4-Nitroaniline	ND	0.100	"	
4,6-Dinitro-2-methylphenol	ND	0.100	"	
N-Nitrosodiphenylamine	ND	0.100	"	
4-Bromophenyl phenyl ether	ND	0.100	"	
Hexachlorobenzene	ND	0.100	"	
Pentachlorophenol	ND	0.100	"	
Phenanthrene	ND	0.100	"	
Anthracene	ND	0.100	"	
Carbazole	ND	0.100	"	
Di-n-butyl phthalate	ND	0.100	"	
Fluoranthene	ND	0.100	"	
Benzidine	ND	0.500	"	
Pyrene	ND	0.100	"	
Butyl benzyl phthalate	ND	0.100	"	
3,3'-Dichlorobenzidine	ND	0.100	"	
Benzo (a) anthracene	ND	0.100	"	
Chrysene	ND	0.100	"	
Bis(2-ethylhexyl)phthalate	ND	0.100	"	
Di-n-octyl phthalate	ND	0.100	"	
Benzo (b) fluoranthene	ND	0.100	"	
Benzo (k) fluoranthene	ND	0.100	"	
Benzo (a) pyrene	ND	0.100	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	
Dibenz (a,h) anthracene	ND	0.100	"	
Benzo (g,h,i) perylene	ND	0.100	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 137 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

SemiVolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch APD0054 - EPA 8270C										
LCS (APD0054-BS1)				Prepared: (04/10/06 An	alyzed: 04	/11/06			
Surrogate: 2-Fluorophenol	1.04		mg/kg	1.67		62.3	0-200			
Surrogate: Phenol-d6	1.18		"	1.67		70.7	0-200			
Surrogate: Nitrobenzene-d5	1.21		"	1.67		72.5	0-200			
Surrogate: 2-Fluorobiphenyl	1.33		"	1.67		79.6	0-200			
Surrogate: 2,4,6-Tribromophenol	1.38		"	1.67		82.6	0-200			
Surrogate: Terphenyl-dl4	1.44		"	1.67		86.2	0-200			
Phenol	1.21	0.100	"	1.67		72.5	0-200			
2-Chlorophenol	1.15	0.100	"	1.67		68.9	0-200			
1,4-Dichlorobenzene	1.15	0.100	"	1.67		68.9	0-200			
N-Nitrosodi-n-propylamine	1.15	0.100	"	1.67		68.9	0-200			
1,2,4-Trichlorobenzene	1.14	0.100	"	1.67		68.3	0-200			
4-Chloro-3-methylphenol	1.32	0.100	"	1.67		79.0	0-200			
Acenaphthene	1.28	0.100	"	1.67		76.6	0-200			
2,4-Dinitrotoluene	1.37	0.100	"	1.67		82.0	0-200			
4-Nitrophenol	0.847	0.100	"	1.67		50.7	0-200			
Pentachlorophenol	0.974	0.100	"	1.67		58.3	0-200			
Pyrene	1.28	0.100	"	1.67		76.6	0-200			
LCS Dup (APD0054-BSD1)				Prepared: (04/10/06 An	alyzed: 04	/11/06			
Surrogate: 2-Fluorophenol	1.02		mg/kg	1.67		61.1	0-200			
Surrogate: Phenol-d6	1.18		"	1.67		70.7	0-200			
Surrogate: Nitrobenzene-d5	1.22		"	1.67		73.1	0-200			
Surrogate: 2-Fluorobiphenyl	1.30		"	1.67		77.8	0-200			
Surrogate: 2,4,6-Tribromophenol	1.37		"	1.67		82.0	0-200			
Surrogate: Terphenyl-dl4	1.42		"	1.67		85.0	0-200			
Phenol	1.22	0.100	"	1.67		73.1	0-200	0.823	20	
2-Chlorophenol	1.15	0.100	"	1.67		68.9	0-200	0.00	20	
1,4-Dichlorobenzene	1.14	0.100	"	1.67		68.3	0-200	0.873	20	
N-Nitrosodi-n-propylamine	1.12	0.100	"	1.67		67.1	0-200	2.64	20	
1,2,4-Trichlorobenzene	1.17	0.100	"	1.67		70.1	0-200	2.60	200	
4-Chloro-3-methylphenol	1.31	0.100	"	1.67		78.4	0-200	0.760	20	
Acenaphthene	1.26	0.100	"	1.67		75.4	0-200	1.57	20	
2,4-Dinitrotoluene	1.32	0.100	"	1.67		79.0	0-200	3.72	20	
4-Nitrophenol	0.815	0.100	"	1.67		48.8	0-200	3.85	20	
Pentachlorophenol	0.955	0.100	"	1.67		57.2	0-200	1.97	20	
Pyrene	1.28	0.100	"	1.67		76.6	0-200	0.00	20	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 138 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street NA Project Number: Date Reported: Sacramento CA, 95812 Dawn Owen 04/21/06 15:09 Project Manager:

SemiVolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		ŖPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch APD0054 - EPA 8270C

Matrix Spike (APD0054-MS1)	Sourc	ce: 0603140-17	Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
Surrogate: 2-Fluorophenol	1.08	mg/kg	1.67		64.7	0-200			
Surrogate: Phenol-d6	1.17	"	1.67		70.1	0-200			
Surrogate: Nitrobenzene-d5	1.18	"	1.67		70.7	0-200			
Surrogate: 2-Fluorobiphenyl	1.26	"	1.67		75.4	0-200			
Surrogate: 2,4,6-Tribromophenol	1.45	"	1.67		86.8	0-200			
Surrogate: Terphenyl-dl4	1.41	"	1.67		84.4	0-200			
Phenol	1.20	0.100 "	1.67	ND	71.9	0-200			
2-Chlorophenol	1.14	0.100 "	1.67	ND	68.3	0-200			
1,4-Dichlorobenzene	1.12	0.100 "	1.67	ND	67.1	0-200			
N-Nitrosodi-n-propylamine	1.17	0.100 "	1.67	ND	70.1	0-200			
1,2,4-Trichlorobenzene	1.12	0.100 "	1.67	ND	67.1	0-200			
4-Chloro-3-methylphenol	1.31	0.100 "	1.67	ND	78.4	0-200			
Acenaphthene	1.24	0.100 "	1.67	ND	74.3	0-200			
2,4-Dinitrotoluene	1.28	0.100 "	1.67	ND	76.6	0-200			
4-Nitrophenol	1.10	0.100 "	1.67	ND	65.9	0-200			
Pentachlorophenol	1.36	0.100 "	1.67	ND	81.4	0-200			
Pyrene	1.30	0.100 "	1.67	ND	77.8	0-200			
Matrix Spike Dup (APD0054-MSD1)	Source	ee: 0603140-17	Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
	1.16	ee: 0603140-17	Prepared: 0	04/10/06 A	69.5	0-200			
Surrogate: 2-Fluorophenol			1	04/10/06 A					
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6	1.16	mg/kg	1.67	04/10/06 A	69.5	0-200			
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5	1.16 1.26	mg/kg	1.67 1.67	04/10/06 A	69.5 75.4	0-200 0-200			
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl	1.16 1.26 1.23	mg/kg	1.67 1.67 1.67	04/10/06 A	69.5 75.4 73.7	0-200 0-200 0-200			
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol	1.16 1.26 1.23 1.25	mg/kg " "	1.67 1.67 1.67 1.67	04/10/06 A	69.5 75.4 73.7 74.9	0-200 0-200 0-200 0-200			
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4	1.16 1.26 1.23 1.25 1.51	mg/kg " " " "	1.67 1.67 1.67 1.67 1.67	04/10/06 A	69.5 75.4 73.7 74.9 90.4	0-200 0-200 0-200 0-200 0-200	7.23	20	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4 Phenol	1.16 1.26 1.23 1.25 1.51 1.49	mg/kg " " " " "	1.67 1.67 1.67 1.67 1.67 1.67		69.5 75.4 73.7 74.9 90.4 89.2	0-200 0-200 0-200 0-200 0-200 0-200	7.23 3.45	20 20	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol	1.16 1.26 1.23 1.25 1.51 1.49	mg/kg " " " " " " 0.100	1.67 1.67 1.67 1.67 1.67 1.67	ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2	0-200 0-200 0-200 0-200 0-200 0-200 0-200			
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol 1,4-Dichlorobenzene	1.16 1.26 1.23 1.25 1.51 1.49 1.29 1.18	mg/kg " " " " " " 0.100 " 0.100 "	1.67 1.67 1.67 1.67 1.67 1.67 1.67	ND ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2 70.7	0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200	3.45	20	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine	1.16 1.26 1.23 1.25 1.51 1.49 1.29 1.18	mg/kg " " " " " 0.100 " 0.100 " 0.100 "	1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	ND ND ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2 70.7 70.1	0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200	3.45 4.37	20 20	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene	1.16 1.26 1.23 1.25 1.51 1.49 1.29 1.18 1.17	mg/kg " " " " " 0.100 " 0.100 " 0.100 " 0.100 "	1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	ND ND ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2 70.7 70.1 71.9	0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200	3.45 4.37 2.53	20 20 20	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol	1.16 1.26 1.23 1.25 1.51 1.49 1.29 1.18 1.17 1.20 1.16	mg/kg " " " " " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 "	1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	ND ND ND ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2 70.7 70.1 71.9 69.5	0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200	3.45 4.37 2.53 3.51	20 20 20 200	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene	1.16 1.26 1.23 1.25 1.51 1.49 1.29 1.18 1.17 1.20 1.16 1.39	mg/kg " " " " " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 "	1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	ND ND ND ND ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2 70.7 70.1 71.9 69.5 83.2	0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200	3.45 4.37 2.53 3.51 5.93	20 20 20 200 200	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2-Fluorobiphenyl Surrogate: 2-Fluorobiphenol Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 2,4-Dinitrotoluene	1.16 1.26 1.23 1.25 1.51 1.49 1.29 1.18 1.17 1.20 1.16 1.39 1.23	mg/kg " " " " " " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 "	1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	ND ND ND ND ND ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2 70.7 70.1 71.9 69.5 83.2 73.7	0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200	3.45 4.37 2.53 3.51 5.93 0.810	20 20 20 200 200 20	
Matrix Spike Dup (APD0054-MSD1) Surrogate: 2-Fluorophenol Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-dl4 Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 2,4-Dinitrotoluene 4-Nitrophenol Pentachlorophenol	1.16 1.26 1.23 1.25 1.51 1.49 1.29 1.18 1.17 1.20 1.16 1.39 1.23 1.35	mg/kg " " " " " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 " 0.100 "	1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	ND	69.5 75.4 73.7 74.9 90.4 89.2 77.2 70.7 70.1 71.9 69.5 83.2 73.7 80.8	0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200 0-200	3.45 4.37 2.53 3.51 5.93 0.810 5.32	20 20 20 200 20 20 20 20	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 139 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

SemiVolatile Organic Compounds by GC/MS - Quality Control

		D (*					0/855		222	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
7 that y to	iccsuit	Lillit	Cints	Levei	iccsuit	/orch	Lillits	KID	Lillin	

Batch APD0069 - EPA 8270C

Blank (APD0069-BLK1)	Prepared & Analyzed: 04/12/06								
Surrogate: 2-Fluorophenol	0.997	m	g/kg 1.67	59.7	10-110				
Surrogate: Phenol-d6	1.07		" 1.67	64.1	10-110				
Surrogate: Nitrobenzene-d5	1.17		" 1.67	70.1	10-110				
Surrogate: 2-Fluorobiphenyl	1.23		" 1.67	73.7	10-110				
Surrogate: 2,4,6-Tribromophenol	1.22		" 1.67	73.1	10-110				
Surrogate: Terphenyl-dl4	1.44		" 1.67	86.2	10-110				
N-Nitrosodimethylamine	ND	0.100	"						
Bis(2-chloroethyl)ether	ND	0.100	"						
Phenol	ND	0.100	"						
2-Chlorophenol	ND	0.100	"						
Benzyl alcohol	ND	0.100	"						
1,4-Dichlorobenzene	ND	0.100	"						
2-Methylphenol	ND	0.100	"						
N-Nitrosodi-n-propylamine	ND	0.100	"						
4-Methylphenol	ND	0.100	"						
Nitrobenzene	ND	0.100	"						
Isophorone	ND	0.100	"						
2-Nitrophenol	ND	0.100	"						
2,4-Dimethylphenol	ND	0.100	"						
Bis(2-chloroethoxy)methane	ND	0.100	"						
Benzoic acid	ND	0.300	"						
2,4-Dichlorophenol	ND	0.100	"						
1,2,4-Trichlorobenzene	ND	0.100	"						
Naphthalene	ND	0.100	"						
4-Chloroaniline	ND	0.100	"						
Hexachlorobutadiene	ND	0.100	"						
4-Chloro-3-methylphenol	ND	0.100	"						
2-Methylnaphthalene	ND	0.100	"						
Hexachlorocyclopentadiene	ND	0.100	"						
2,4,6-Trichlorophenol	ND	0.100	"						
2,4,5-Trichlorophenol	ND	0.100	"						
2-Chloronaphthalene	ND	0.100	"						
2-Nitroaniline	ND	0.100	"						
Acenaphthylene	ND	0.100	"						
Dimethyl phthalate	ND	0.100	"						
2,6-Dinitrotoluene	ND	0.100	"						
Acenaphthene	ND	0.100	"						
3-Nitroaniline	ND	0.100	"						
2,4-Dinitrophenol	ND	0.100	"						

Excelchem Environmental Lab.

Du Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 140 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

SemiVolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%PEC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch APD0069 - EPA 8270C

Blank (APD0069-BLK1)				Prepared & Analyzed: 04/12/06
Dibenzofuran	ND	0.100	mg/kg	
2,4-Dinitrotoluene	ND	0.100	"	
4-Nitrophenol	ND	0.100	"	
Fluorene	ND	0.100	"	
4-Chlorophenyl phenyl ether	ND	0.100	"	
Diethyl phthalate	ND	0.100	"	
4-Nitroaniline	ND	0.100	"	
4,6-Dinitro-2-methylphenol	ND	0.100	"	
N-Nitrosodiphenylamine	ND	0.100	"	
4-Bromophenyl phenyl ether	ND	0.100	"	
Hexachlorobenzene	ND	0.100	"	
Pentachlorophenol	ND	0.100	"	
Phenanthrene	ND	0.100	"	
Anthracene	ND	0.100	"	
Carbazole	ND	0.100	"	
Di-n-butyl phthalate	ND	0.100	"	
Fluoranthene	ND	0.100	"	
Benzidine	ND	0.500	"	
Pyrene	ND	0.100	"	
Butyl benzyl phthalate	ND	0.100	"	
3,3´-Dichlorobenzidine	ND	0.100	"	
Benzo (a) anthracene	ND	0.100	"	
Chrysene	ND	0.100	"	
Bis(2-ethylhexyl)phthalate	ND	0.100	"	
Di-n-octyl phthalate	ND	0.100	"	
Benzo (b) fluoranthene	ND	0.100	"	
Benzo (k) fluoranthene	ND	0.100	"	
Benzo (a) pyrene	ND	0.100	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	"	
Dibenz (a,h) anthracene	ND	0.100	"	
Benzo (g,h,i) perylene	ND	0.100	"	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 141 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

SemiVolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch APD0069 - EPA 8270C										
LCS (APD0069-BS1)				Prepared &	t Analyzed:	04/12/06				
Surrogate: 2-Fluorophenol	0.909		mg/kg	1.67		54.4	0-200			
Surrogate: Phenol-d6	1.02		"	1.67		61.1	0-200			
Surrogate: Nitrobenzene-d5	1.13		"	1.67		67.7	0-200			
Surrogate: 2-Fluorobiphenyl	1.24		"	1.67		74.3	0-200			
Surrogate: 2,4,6-Tribromophenol	1.21		"	1.67		72.5	0-200			
Surrogate: Terphenyl-dl4	1.48		"	1.67		88.6	0-200			
Phenol	1.15	0.100	"	1.67		68.9	0-200			
2-Chlorophenol	1.08	0.100	"	1.67		64.7	0-200			
1,4-Dichlorobenzene	1.12	0.100	"	1.67		67.1	0-200			
N-Nitrosodi-n-propylamine	0.946	0.100	"	1.67		56.6	0-200			
1,2,4-Trichlorobenzene	1.11	0.100	"	1.67		66.5	0-200			
4-Chloro-3-methylphenol	1.26	0.100	"	1.67		75.4	0-200			
Acenaphthene	1.26	0.100	"	1.67		75.4	0-200			
2,4-Dinitrotoluene	1.32	0.100	"	1.67		79.0	0-200			
4-Nitrophenol	1.03	0.100	"	1.67		61.7	0-200			
Pentachlorophenol	0.905	0.100	"	1.67		54.2	0-200			
Pyrene	1.22	0.100	"	1.67		73.1	0-200			
LCS Dup (APD0069-BSD1)				Prepared &	አ Analyzed:	04/12/06				
Surrogate: 2-Fluorophenol	0.911		mg/kg	1.67		54.6	0-200			
Surrogate: Phenol-d6	0.998		"	1.67		59.8	0-200			
Surrogate: Nitrobenzene-d5	1.10		"	1.67		65.9	0-200			
Surrogate: 2-Fluorobiphenyl	1.20		"	1.67		71.9	0-200			
Surrogate: 2,4,6-Tribromophenol	1.22		"	1.67		73.1	0-200			
Surrogate: Terphenyl-dl4	1.44		"	1.67		86.2	0-200			
Phenol	1.13	0.100	"	1.67		67.7	0-200	1.75	20	
2-Chlorophenol	1.03	0.100	"	1.67		61.7	0-200	4.74	20	
1,4-Dichlorobenzene	1.04	0.100	"	1.67		62.3	0-200	7.41	20	
N-Nitrosodi-n-propylamine	0.970	0.100	"	1.67		58.1	0-200	2.51	20	
1,2,4-Trichlorobenzene	1.06	0.100	"	1.67		63.5	0-200	4.61	200	
4-Chloro-3-methylphenol	1.30	0.100	"	1.67		77.8	0-200	3.12	20	
Acenaphthene	1.22	0.100	"	1.67		73.1	0-200	3.23	20	
2,4-Dinitrotoluene	1.36	0.100	"	1.67		81.4	0-200	2.99	20	
4-Nitrophenol	1.12	0.100	"	1.67		67.1	0-200	8.37	20	
Pentachlorophenol	0.992	0.100	"	1.67		59.4	0-200	9.17	20	
Pyrene	1.25	0.100	"	1.67		74.9	0-200	2.43	20	

Excelchem Environmental Lab.

De Donn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Representative Page 142 of 144

CIWMB Project: Disposal Gardens

P.O. Box 4025 / 1001 I Street Project Number: NA Date Reported: Sacramento CA, 95812 Project Manager: Dawn Owen 04/21/06 15:09

SemiVolatile Organic Compounds by GC/MS - Quality Control

		Danastina		C:1	C		0/DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Batch APD0069 - EPA 8270C

Matrix Spike (APD0069-MS1)	Source	Source: 0603140-26			nalyzed: 04				
Surrogate: 2-Fluorophenol	0.899	mg/kg	1.67		53.8	0-200			
Surrogate: Phenol-d6	0.999	"	1.67		59.8	0-200			
Surrogate: Nitrobenzene-d5	1.02	"	1.67		61.1	0-200			
Surrogate: 2-Fluorobiphenyl	1.10	"	1.67		65.9	0-200			
Surrogate: 2,4,6-Tribromophenol	1.35	"	1.67		80.8	0-200			
Surrogate: Terphenyl-dl4	1.40	"	1.67		83.8	0-200			
Phenol	1.11	0.100 "	1.67	ND	66.5	0-200			
2-Chlorophenol	1.01	0.100 "	1.67	ND	60.5	0-200			
1,4-Dichlorobenzene	0.956	0.100 "	1.67	ND	57.2	0-200			
N-Nitrosodi-n-propylamine	1.04	0.100 "	1.67	ND	62.3	0-200			
1,2,4-Trichlorobenzene	1.02	0.100 "	1.67	ND	61.1	0-200			
4-Chloro-3-methylphenol	1.36	0.100 "	1.67	ND	81.4	0-200			
Acenaphthene	1.12	0.100 "	1.67	ND	67.1	0-200			
2,4-Dinitrotoluene	1.24	0.100 "	1.67	ND	74.3	0-200			
4-Nitrophenol	1.13	0.100 "	1.67	ND	67.7	0-200			
Pentachlorophenol	1.02	0.100 "	1.67	ND	61.1	0-200			
Pyrene	1.29	0.100 "	1.67	ND	77.2	0-200			
Matrix Spike Dup (APD0069-MSD1)	Source	e: 0603140-26	Prepared:	04/12/06 A	nalyzed: 04	1/13/06			
Surrogate: 2-Fluorophenol	0.946	mg/kg	1.67		56.6	0-200			
Surrogate: Phenol-d6	1.07	"	1.67		64.1	0-200			
Surrogate: Nitrobenzene-d5	1.07	"	1.67		64.1	0-200			
Surrogate: 2-Fluorobiphenyl	1.13	"	1.67		67.7	0-200			
Surrogate: 2,4,6-Tribromophenol	1.39	"	1.67		83.2	0-200			
Surrogate: Terphenyl-dl4	1.42	"	1.67		85.0	0-200			
Phenol	1.18	0.100 "	1.67	ND	70.7	0-200	6.11	20	
2-Chlorophenol	1.05	0.100 "	1.67	ND	62.9	0-200	3.88	20	
1,4-Dichlorobenzene	0.994	0.100 "	1.67	ND	59.5	0-200	3.90	20	
N-Nitrosodi-n-propylamine	1.07	0.100 "	1.67	ND	64.1	0-200	2.84	20	
1,2,4-Trichlorobenzene	1.06	0.100 "	1.67	ND	63.5	0-200	3.85	200	
4-Chloro-3-methylphenol	1.41	0.100 "	1.67	ND	84.4	0-200	3.61	20	
Acenaphthene	1.19	0.100 "	1.67	ND	71.3	0-200	6.06	20	
2,4-Dinitrotoluene	1.30	0.100 "	1.67	ND	77.8	0-200	4.72	20	
4-Nitrophenol	1.14	0.100 "	1.67	ND	68.3	0-200	0.881	20	
Pentachlorophenol	1.03	0.100 "	1.67	ND	61.7	0-200	0.976	20	

Excelchem Environmental Lab.

Pyrene

De Donn

1.27

0.100

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

76.0

0-200

1.56

20

Laboratory Representative Page 143 of 144

1.67

ND

CIWMB	Project:	Disposal Gardens	
P.O. Box 4025 / 1001 I Street	Project Number:	NA	Date Reported:
Sacramento CA, 95812	Project Manager:	Dawn Owen	04/21/06 15:09

Notes and Definitions

S-LOW Low surrogate recovery confirmed as a matrix effect by a second analysis.

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration

and/or matrix interference's.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

acceptable LCS recovery.

ND - Analyte not detected at reporting limit.

NR - Not reported